[スポンサーリンク]

スポットライトリサーチ

分子形状初期化法「T・レックス」の実現~いつでもどこでも誰でも狙った場所だけ狙ったタイミングで~

[スポンサーリンク]

第187回スポットライトリサーチは、東京大学の本多智先生にお願いしました。

本多先生は、以前にもスポットライトリサーチでインタビューさせていただいており、そのときにはターミネーターに登場する悪役アンドロイド T-1000 を物質科学の視点から再現しようとした試みについてお話いただきました。このたび、前回の成果をさらに発展させて、高分子の形状を制御する新しい方法論を開発されました。本成果は、Angew. Chem., Int. Ed. 誌にオープンアクセスで掲載されるとともに、プレスリリースとしても発表されております。

Topology‐Reset Execution: Repeatable Postcyclization Recyclization of Cyclic Polymers

Honda, S.; Oka, M.; Takagi, H.; Toyota, T.

Angew. Chem., Int. Ed. 2019, 58, 144­–148. DOI: 10.1002/anie.201809621

今回開発された高分子の形状制御法には、T-rex 法というキャッチーな名前がつけられておりますが、本インタビューではその命名秘話についてもお話しいただきました。それでは、インタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?

光刺激の有無で切断・再生する原子団(ヘキサアリールビイミダゾール: HABI)が組み込まれた環状ポリジメチルシロキサン(PDMS)を合成しました(図1a)。この環状PDMSにUVを照射すると、分子鎖が次々に切断されて最終的には反応性末端(トリフェニルイミダゾイルラジカル: TPIR)を持つ最小単位の直鎖状PDMSが得られ、光の照射をやめると鎖延長と環化が起こり環状PDMSが再生します(図1b)。また、「溶媒を用いず空気中で何度もこのサイクルを繰り返せる」ところがポイントです。この方法論の鍵は、高分子の形状(トポロジー)が初期化(リセット)されることなので、「T・レックス」(Topology-reset execution: T-rex)と名付けました。

図1 (a)環状PDMSの構造および(b)T・レックスの概念図

Q2. ではその T-rex 法によって、材料にどのような機能が生まれたのですか

環状PDMSにUVを照射すると、HABIの切断に伴ってTPIRを生成して鮮やかなピンク色になります(図2a)。また、液体状態を維持したまま流動性が著しく低下します。液体/固体らしさの指標でもある損失正接(tan δ)に着目すると、光照射後にはtan δ が4倍に増大し光の照射をやめるとtan δが元に戻りました(図2b)。このtan δの変化は、ネバネバな液体にUVをあてると一瞬にしてサラサラな液体に変わり、光を消すと数分で元に戻ることに対応します。

ケイ素化合物を扱っている試薬メーカーさん、販売しませんか?ガラス製のデシケーターのすりの部分にグリースとして塗れば、蓋が外れなくて困っても光をあてるだけで簡単に外せるようになるかもしれませんよ(笑)困りますもんね、あのタイミング・・・。

図2 (a)環状PDMSへのUV照射直後の写真および(b)損失正接(tan δ)の時間変化測定結果。横軸は時間で、網掛け領域はUVを照射した時間を表す。

他にも論文中では、環状PDMS溶液にUVをあてると分子量を操作できることや、力学刺激(せん断力)によって高分子鎖が切断されてもHABIが犠牲的に切断されて自発的に再生することを示しました。力学刺激の部分は、Stanford Univ.のProf. Waymouth(以後、Bob)が日本にいらしたときに「こんなこといいな、できたらいいな」と色々話したことの一端が実現したところでもあり、個人的にメチャメチャ面白いと思っています。色々裏話もあるのですが、今回は長くなるのでカットします・・・。

Q3. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

面白い性質を示す物質は、世界中のどこでも合成されています。しかし、それを実用に耐えうるプロセスに落とし込もうとすると簡単ではありません。今回、わたしたちが報告した物質にも面白い性質があると自負していますが、それ以上に思い入れがあるのは物質の機能設計以外の部分です。

例えば、サポーティングインフォメーションに載っている合成スキームを見て頂けると嬉しいです。はじめに末端ビニル型PDMS(市販品もある)を合成し、続いて工業利用されるKarstedt’s触媒を用いたヒドロシリル化により前駆体を得られます。その後の環化反応は、無機塩を含む水溶液とPDMSを含むヘキサン溶液との二相系反応で、反応後にはヘキサン層を水で洗浄したのちに濃縮するだけです。いずれの段階でも精製には洗浄操作しか必要とせず、スケールアップが容易です。市販の末端ビニル型PDMSを出発物質としても、いとも簡単に環状PDMSが得られます。

図3 前駆体の合成スキーム (サポーティングインフォメーションから引用)

その他にも論文中でサラッと流しているところに、いくつもの工夫や拘りがあります。

ちなみに最初のステップの有機触媒を用いた開環重合によるPDMSの合成を、もう10年以上も前に徹底的に研究していたのがBobらです2。関連して、現在進行中の研究に対してBobから様々な助言をもらっており、メチャクチャ面白い成果になりそうです。乞うご期待。

Q4. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

研究テーマには、いつも一見して達成困難な目標を設定しています。今回は、副題の「いつでもどこでも誰でも狙った場所だけ狙ったタイミングで」です。どう見ても難しそうですが、一昨年にもインタビューして頂いたときの成果をうまく活用でき、あれよあれよと出来ました。

ただし、困難になる可能性を感じていた部分はあります。それは、結合の切断と再生の鍵を握るHABIがPDMSと相溶するかどうかです。HABIがPDMSと相分離した場合、その解決には2, 3ヵ月を要すると考えていくつかの実験を想定していました。しかし、HABI以外にも複数の光応答性基を使って実験していたため、PDMSとの相溶性に関する知見も蓄積しました。結果的には、HABIの前駆体はPDMSと相溶しないのに対して、HABIそのものはPDMSと相溶したため問題になりませんでした。有機・高分子化学の基本に忠実に、出来ることと出来ないことを整理したら、自ずと最初の物質設計で当たったイメージです。

ところで、小さい子にとって恐竜はアイドルです。実は、5歳になった私の息子がティラノサウルスが大好きなので、今回開発した高分子の形状制御法をなんとかT-rexにしようと語呂合わせを頑張りました。実質、これがイチバン難しかったかもしれません(笑)。

図4 息子にプレゼントした T-rex の絵本

Q5. 将来は化学とどう関わっていきたいですか?

昨年6月から米国スタンフォード大学化学科で研究しています。ここでは、研究者同士の連携が密で、基礎研究の成果が実用化される例も豊富です。日本にいると、しばしば基礎と応用に研究を分けてみたりと、別にしたくもないポジショニングに無理やり押し込まれて話が進むことがあります。しかし、ここで私が見た先生方の多くは、「どれもできて当然だよね」といった雰囲気を背中で語ってくれますし、なによりも自由です。こうした自由の風に吹かれていると、私もそのように化学と関わりたいという気持ちが強くなります。

以前のインタビューの際には、「チャレンジ精神を忘れず、楽しみながら、地に足をつけて、夢のある研究に取り組んでいきたい」と決意しました。そこから少々発展させて、「チャレンジ精神を忘れず、楽しみながら、地に足をつけて、自分が面白いと思える夢の技術に向けて基礎から実用化にまで取り組んでいきたいです」を、化学とのかかわり方に関する今後の決意としたいと思います。欲張っていこうと思います。

Q6. 最後に、読者の皆さんにメッセージをお願いします。

現在、この研究に関連して実用化に向けた様々な取り組みが始まっています。こうした内容にも興味をお持ちの方がいらしたら御連絡を頂ければと思います(c-honda[アットマーク]mail.ecc.u-tokyo.ac.jp)。また、「こんなことを実現したい!」という確たる夢があり、研究にも勉強にも貪欲に邁進できる熱意に溢れた方を歓迎します。

最後になりましたが、本研究は沢山のご支援のもとで成り立っています。高分子トポロジーの組換えにおける学術的本質を探る研究展開では、科学研究費補助金・新学術領域研究(研究領域提案型)「次世代物質探索のための離散幾何学」の御支援を受けました。また、わたしたちの物質の実用化を探る展開では、東京大学卓越研究員およびGAPファンドプログラムの御支援を受けました。関係者の皆様にこの場を借りて心より感謝申し上げます。

【略歴】

本多 智(ほんだ さとし)
博士(工学)、東京大学助教
1984年11月生まれ。東京工業大学博士後期課程修了(2013年3月)。東京理科大学嘱託助教(2013年4月–2015年6月)を経て2015年7月より現職。スタンフォード大学化学科Visiting Research Fellow(2018年6月–)および千葉大学フロンティア医工学センター特別研究員(2016年10月–)兼任。趣味は格闘技(やるほう)とジャズ(聴くほう)、生きがいは美味しい酒と料理。

関連記事・リンク

参考文献

  1. Honda, S.; Oka, M.; Takagi, H.; Toyota, T. Angew. Chem., Int. Ed. 2018, 58, 144­–148. DOI: 10.1002/anie.201809621
  2. Lohmeijer, B. G. G.; Dubois, G.; Leibfarth, F.; Pratt, R. C.; Nederberg, F.; Nelson, A.; Waymouth, R. M.; Wade, C.; Hedrick, J. L. Org. Lett. 2006, 84683-4686. DOI; 10.1021/ol0614166

 

やぶ

投稿者の記事一覧

PhD候補生として固体材料を研究しています。学部レベルの基礎知識の解説から、最先端の論文の解説まで幅広く頑張ります。高専出身。

関連記事

  1. トンネル効果が支配する有機化学反応
  2. 有機合成化学協会誌2020年8月号:E2212製法・ヘリセン・炭…
  3. 君はPHOZONを知っているか?
  4. タンパクの「進化分子工学」とは
  5. アルケニルアミドに2つアリールを入れる
  6. ユニークな名前を持つ配位子
  7. 2010年ノーベル化学賞予想―トムソン・ロイター版
  8. ルテニウム触媒を用いたcis選択的開環メタセシス重合

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. SPring-8って何?(初級編)
  2. 旭化成ファーマ、北海道に「コエンザイムQ10」の生産拠点を新設
  3. セイファース・ギルバート アルキン合成 Seyferth-Gilbert Alkyne Synthesis
  4. 超原子価ヨウ素試薬PIFAで芳香族アミドをヒドロキシ化
  5. (+)-ゴニオトキシンの全合成
  6. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活用とは?
  7. 中小企業・創薬ベンチャー必見!最新研究機器シェアリングシステム
  8. 鉄系超伝導体の臨界温度が4倍に上昇
  9. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  10. 同仁化学研、ビオチン標識用キットを発売

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP