[スポンサーリンク]

化学者のつぶやき

高分子を”見る” その2

[スポンサーリンク]

 

(画像は冒頭論文[2]より)

[1] Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
[2] Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k

 

前回は環状高分子のAFM観察を取り上げましたが、今回はノット型、カテナン型、そして分岐状の高分子をAFM観察した論文を紹介します。

鎖状高分子をねじれた状態で環化させると、結び目の形になった、ノット型高分子が得られます。実際には分子内で反発が起こるため、鎖状高分子がねじれた状態で環化する可能性は非常に低く、生成物中にノット型高分子はほとんど存在しないはずです。

しかし、Deffieuxらは大量の環状高分子を入念に観察し、そこからノット型高分子を見つけ出してAFM観察を行っています。結び目は、右巻きと左巻きが考えられるのですが、どちらも観察されています。

 

polymAFM5.jpg

(画像は[1]より)

 

そして、環状高分子が知恵の輪や鎖のように繋がった、カテナン型高分子も報告されています。分子間反発が存在するために、カテナン型高分子生成の確立はノット型高分子よりもずっと低いものと考えられますが、しっかりと環が繋がっている様子が撮影されています。
気の遠くなるような、地道な作業だったんだろうなあ…と思わずにはいられません。この写真を撮るために何時間ディスプレイを眺め続けたのでしょうか…。

 

polymAFM6.jpg

(画像は[1]より)

 

さらに、分岐状高分子のAFM観察もDeffieuxらにより報告されています。分岐状高分子は東京工業大学の平尾らが合成したもので、アニオン重合を用いてどんどん分岐を作り上げていき、最終的には分子量1430万、末端の数が7600という、とんでもないサイズの分岐状高分子を合成しています。
これだけ分岐があり分子量が大きいのですが、(分取を行ってはいますが)分子量分布は1.08と小さく、分岐構造が精密に制御されていることが分かります。ここまでくるともう職人芸の世界ですね。

 

合成が職人芸なら、AFM観察も職人芸です。この分岐状高分子を観察して、下のような写真が撮影されています。今回合成された分岐状高分子は4つの部分に分かれることが分かりますが、確かにAFM写真でも4つの部分に分かれている様子が見て取れます。

 

polymAFM7.jpg

(画像は[2]のGraphycal Abstractより)

 

平尾先生の講演会でこの分岐状高分子の合成についての話を伺ったので補足を少し。初め、末端の分子密度が高いために、ボール状の高分子になるのではないか、ということで合成したそうです。しかし、実際に観察してみると自分の重さで潰れてしまったために、写真にあるように4つの部分に分かれている様子のみが観察されたようです。この場合、高分子自身の重さだけでなく、基板との相互作用なども高分子の形態に大きな影響を与えるようです。

グラフトにより主鎖を太くしたり、分子を大きくすることでAFM観察を行う方法を取り上げましたが、高分子に電荷を持たせたり、蛍光部位を導入したりすることでも高分子の観察が可能になります。

最近は合成技術の進歩もあり、高分子の化学構造だけではなく、分子鎖全体の構造にも興味が持たれるようになってきており、なによりの合成の証明になるので、高分子を”見る”技術が重要になってきています。

一方で、顕微鏡のイメージング技術も高まってきており、近年は、TEMで低分子1つを直接観察したという報告もなされています[3]。

高分子に限らず、様々な分子を”見る”ことができるようになれば、研究だけでなく教育や一般の方への情報発信にも有用になるのでは、と思います。

 

関連文献

  1. Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
  2. Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k
  3. Nakamura, E.; Koshino, M.; Tanaka, T.; Niimi, Y.; Harano, K.; Nakamura, Y.; Isobe, H.  J. Am. Chem. Soc. 2008, 130, 7808. doi:10.1021/ja8022708
suiga

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 細菌を取り巻く生体ポリマーの意外な化学修飾
  2. 中学入試における化学を調べてみた
  3. 有機合成化学協会誌2018年11月号:オープンアクセス・英文号!…
  4. 論文執筆で気をつけたいこと20(2)
  5. Ru触媒で異なるアルキン同士をantiで付加させる
  6. オペレーションはイノベーションの夢を見るか? その3+まとめ
  7. ガン細胞を掴んで離さない分子の開発
  8. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 独バイエル、2004年は3部門全てで増収となった可能性=CEO
  2. 還元的脱硫反応 Reductive Desulfurization
  3. 植物の受精効率を高める糖鎖「アモール」の発見
  4. 有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発
  5. 農薬メーカの事業動向・戦略について調査結果を発表
  6. アントンパール 「Monowave300」: マイクロ波有機合成の新武器
  7. 三共、第一製薬が統合へ 売上高9000億円規模
  8. A-Phosパラジウム錯体
  9. フレーザー・ストッダート James Fraser Stoddart
  10. ~祭りの後に~ アゴラ企画:有機合成化学カードゲーム【遊機王】

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

いろんなカタチの撹拌子を試してみた

大好評、「試してみた」シリーズの第5弾。今回は様々な化合物を反応させる際に必須な撹拌子(回転…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

バイオマスからブタジエンを生成する新技術を共同開発

日本ゼオンは、理研、横浜ゴムと共同で設置している「バイオモノマー生産研究チーム」の研究により、バイオ…

【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

電子のやり取りでアセンの分子構造を巧みに制御

第308回のスポットライトリサーチは、北海道大学大学院総合化学院(鈴木研究室)・張本 尚さんにお願い…

第147回―「カリックスアレーンを用いる集合体の創製」Tony Coleman教授

第147回の海外化学者インタビューは、アンソニー・W・コールマン(通称トニー)教授です。フランスのリ…

ノーコードでM5Stack室内環境モニターを作ろう

COVID-19の影響で居室や実験室の換気状況を見直された方は多いと思います。化学系の実験室は定期的…

Chem-Station Twitter

PAGE TOP