[スポンサーリンク]

化学者のつぶやき

高分子を”見る” その2

[スポンサーリンク]

 

(画像は冒頭論文[2]より)

[1] Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
[2] Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k

 

前回は環状高分子のAFM観察を取り上げましたが、今回はノット型、カテナン型、そして分岐状の高分子をAFM観察した論文を紹介します。

鎖状高分子をねじれた状態で環化させると、結び目の形になった、ノット型高分子が得られます。実際には分子内で反発が起こるため、鎖状高分子がねじれた状態で環化する可能性は非常に低く、生成物中にノット型高分子はほとんど存在しないはずです。

しかし、Deffieuxらは大量の環状高分子を入念に観察し、そこからノット型高分子を見つけ出してAFM観察を行っています。結び目は、右巻きと左巻きが考えられるのですが、どちらも観察されています。

 

polymAFM5.jpg

(画像は[1]より)

 

そして、環状高分子が知恵の輪や鎖のように繋がった、カテナン型高分子も報告されています。分子間反発が存在するために、カテナン型高分子生成の確立はノット型高分子よりもずっと低いものと考えられますが、しっかりと環が繋がっている様子が撮影されています。
気の遠くなるような、地道な作業だったんだろうなあ…と思わずにはいられません。この写真を撮るために何時間ディスプレイを眺め続けたのでしょうか…。

 

polymAFM6.jpg

(画像は[1]より)

 

さらに、分岐状高分子のAFM観察もDeffieuxらにより報告されています。分岐状高分子は東京工業大学の平尾らが合成したもので、アニオン重合を用いてどんどん分岐を作り上げていき、最終的には分子量1430万、末端の数が7600という、とんでもないサイズの分岐状高分子を合成しています。
これだけ分岐があり分子量が大きいのですが、(分取を行ってはいますが)分子量分布は1.08と小さく、分岐構造が精密に制御されていることが分かります。ここまでくるともう職人芸の世界ですね。

 

合成が職人芸なら、AFM観察も職人芸です。この分岐状高分子を観察して、下のような写真が撮影されています。今回合成された分岐状高分子は4つの部分に分かれることが分かりますが、確かにAFM写真でも4つの部分に分かれている様子が見て取れます。

 

polymAFM7.jpg

(画像は[2]のGraphycal Abstractより)

 

平尾先生の講演会でこの分岐状高分子の合成についての話を伺ったので補足を少し。初め、末端の分子密度が高いために、ボール状の高分子になるのではないか、ということで合成したそうです。しかし、実際に観察してみると自分の重さで潰れてしまったために、写真にあるように4つの部分に分かれている様子のみが観察されたようです。この場合、高分子自身の重さだけでなく、基板との相互作用なども高分子の形態に大きな影響を与えるようです。

グラフトにより主鎖を太くしたり、分子を大きくすることでAFM観察を行う方法を取り上げましたが、高分子に電荷を持たせたり、蛍光部位を導入したりすることでも高分子の観察が可能になります。

最近は合成技術の進歩もあり、高分子の化学構造だけではなく、分子鎖全体の構造にも興味が持たれるようになってきており、なによりの合成の証明になるので、高分子を”見る”技術が重要になってきています。

一方で、顕微鏡のイメージング技術も高まってきており、近年は、TEMで低分子1つを直接観察したという報告もなされています[3]。

高分子に限らず、様々な分子を”見る”ことができるようになれば、研究だけでなく教育や一般の方への情報発信にも有用になるのでは、と思います。

 

関連文献

  1. Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
  2. Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k
  3. Nakamura, E.; Koshino, M.; Tanaka, T.; Niimi, Y.; Harano, K.; Nakamura, Y.; Isobe, H.  J. Am. Chem. Soc. 2008, 130, 7808. doi:10.1021/ja8022708
Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. 第31回Vシンポ「精密有機構造解析」を開催します!
  2. マイクロ波を用いた革新的製造プロセスとヘルスケア領域への事業展開…
  3. 多角的英語勉強法~オンライン英会話だけで満足していませんか~
  4. 公募開始!2020 CAS Future Leaders プログ…
  5. 化学者のためのエレクトロニクス講座~有機半導体編
  6. Stephacidin Bの全合成と触媒的ヒドロアミノアルキル化…
  7. メタロペプチド触媒を用いるFc領域選択的な抗体修飾法
  8. 世界で初めて有機半導体の”伝導帯バンド構造̶…

注目情報

ピックアップ記事

  1. 歪み促進逆電子要請型Diels-Alder反応 SPIEDAC reaction
  2. 糖鎖合成化学は芸術か?
  3. アメリカ化学留学 ”大まかな流れ 編”
  4. 岩田忠久 Tadahisa Iwata
  5. 2009年10大分子発表!
  6. 実験の再現性でお困りではありませんか?
  7. 第52回「薬として働く人工核酸を有機化学的に創製する」和田 猛教授
  8. メントール /menthol
  9. 歪み促進型アジド-アルキン付加環化 SPAAC Reaction
  10. 出発原料から学ぶ「Design and Strategy in Organic Synthesis」

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

有機合成化学協会誌2025年7月号:窒素ドープカーボン担持金属触媒・キュバン/クネアン・電解合成・オクタフルオロシクロペンテン・Mytilipin C

有機合成化学協会が発行する有機合成化学協会誌、2025年7月号がオンラインで公開されています。…

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP