[スポンサーリンク]

化学者のつぶやき

高分子を”見る” その2

[スポンサーリンク]

 

(画像は冒頭論文[2]より)

[1] Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
[2] Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k

 

前回は環状高分子のAFM観察を取り上げましたが、今回はノット型、カテナン型、そして分岐状の高分子をAFM観察した論文を紹介します。

鎖状高分子をねじれた状態で環化させると、結び目の形になった、ノット型高分子が得られます。実際には分子内で反発が起こるため、鎖状高分子がねじれた状態で環化する可能性は非常に低く、生成物中にノット型高分子はほとんど存在しないはずです。

しかし、Deffieuxらは大量の環状高分子を入念に観察し、そこからノット型高分子を見つけ出してAFM観察を行っています。結び目は、右巻きと左巻きが考えられるのですが、どちらも観察されています。

 

polymAFM5.jpg

(画像は[1]より)

 

そして、環状高分子が知恵の輪や鎖のように繋がった、カテナン型高分子も報告されています。分子間反発が存在するために、カテナン型高分子生成の確立はノット型高分子よりもずっと低いものと考えられますが、しっかりと環が繋がっている様子が撮影されています。
気の遠くなるような、地道な作業だったんだろうなあ…と思わずにはいられません。この写真を撮るために何時間ディスプレイを眺め続けたのでしょうか…。

 

polymAFM6.jpg

(画像は[1]より)

 

さらに、分岐状高分子のAFM観察もDeffieuxらにより報告されています。分岐状高分子は東京工業大学の平尾らが合成したもので、アニオン重合を用いてどんどん分岐を作り上げていき、最終的には分子量1430万、末端の数が7600という、とんでもないサイズの分岐状高分子を合成しています。
これだけ分岐があり分子量が大きいのですが、(分取を行ってはいますが)分子量分布は1.08と小さく、分岐構造が精密に制御されていることが分かります。ここまでくるともう職人芸の世界ですね。

 

合成が職人芸なら、AFM観察も職人芸です。この分岐状高分子を観察して、下のような写真が撮影されています。今回合成された分岐状高分子は4つの部分に分かれることが分かりますが、確かにAFM写真でも4つの部分に分かれている様子が見て取れます。

 

polymAFM7.jpg

(画像は[2]のGraphycal Abstractより)

 

平尾先生の講演会でこの分岐状高分子の合成についての話を伺ったので補足を少し。初め、末端の分子密度が高いために、ボール状の高分子になるのではないか、ということで合成したそうです。しかし、実際に観察してみると自分の重さで潰れてしまったために、写真にあるように4つの部分に分かれている様子のみが観察されたようです。この場合、高分子自身の重さだけでなく、基板との相互作用なども高分子の形態に大きな影響を与えるようです。

グラフトにより主鎖を太くしたり、分子を大きくすることでAFM観察を行う方法を取り上げましたが、高分子に電荷を持たせたり、蛍光部位を導入したりすることでも高分子の観察が可能になります。

最近は合成技術の進歩もあり、高分子の化学構造だけではなく、分子鎖全体の構造にも興味が持たれるようになってきており、なによりの合成の証明になるので、高分子を”見る”技術が重要になってきています。

一方で、顕微鏡のイメージング技術も高まってきており、近年は、TEMで低分子1つを直接観察したという報告もなされています[3]。

高分子に限らず、様々な分子を”見る”ことができるようになれば、研究だけでなく教育や一般の方への情報発信にも有用になるのでは、と思います。

 

関連文献

  1. Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
  2. Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k
  3. Nakamura, E.; Koshino, M.; Tanaka, T.; Niimi, Y.; Harano, K.; Nakamura, Y.; Isobe, H.  J. Am. Chem. Soc. 2008, 130, 7808. doi:10.1021/ja8022708
Avatar photo

suiga

投稿者の記事一覧

高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. パーフルオロ系界面活性剤のはなし ~規制にかかった懸念物質
  2. 学術変革領域(B)「糖化学ノックイン」発足!
  3. DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異…
  4. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発
  5. 巧みに骨格構築!Daphgracilineの全合成
  6. 複数のねじれを持つ芳香族ベルトの不斉合成と構造解析に成功
  7. 室温固相反応で青色発光物質Cs₃Cu₂I₅の良質薄膜が生成とその…
  8. 第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を…

注目情報

ピックアップ記事

  1. 研究者のためのCG作成術②(VESTA編)
  2. NHPI触媒によるC-H酸化 C-H Oxidation with NHPI Catalyst
  3. O-アシルイソペプチド法 O-acylisopeptide Method
  4. 堂々たる夢 世界に日本人を認めさせた化学者・高峰譲吉の生涯
  5. MEDCHEM NEWS 31-1号「低分子創薬」
  6. アレルギー治療に有望物質 受容体を標的に、京都大
  7. リチウム Lithium -リチウム電池から医薬品まで
  8. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow
  9. トリフルオロ酢酸パラジウム(II) : Palladium(II) Trifluoroacetate
  10. ポリエチレンなど合成樹脂、値上げ浸透

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年8月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

創薬懇話会2025 in 大津

日時2025年6月19日(木)~6月20日(金)宿泊型セミナー会場ホテル…

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー