[スポンサーリンク]

化学者のつぶやき

高分子を”見る” その2

[スポンサーリンク]

 

(画像は冒頭論文[2]より)

[1] Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
[2] Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k

 

前回は環状高分子のAFM観察を取り上げましたが、今回はノット型、カテナン型、そして分岐状の高分子をAFM観察した論文を紹介します。

鎖状高分子をねじれた状態で環化させると、結び目の形になった、ノット型高分子が得られます。実際には分子内で反発が起こるため、鎖状高分子がねじれた状態で環化する可能性は非常に低く、生成物中にノット型高分子はほとんど存在しないはずです。

しかし、Deffieuxらは大量の環状高分子を入念に観察し、そこからノット型高分子を見つけ出してAFM観察を行っています。結び目は、右巻きと左巻きが考えられるのですが、どちらも観察されています。

 

polymAFM5.jpg

(画像は[1]より)

 

そして、環状高分子が知恵の輪や鎖のように繋がった、カテナン型高分子も報告されています。分子間反発が存在するために、カテナン型高分子生成の確立はノット型高分子よりもずっと低いものと考えられますが、しっかりと環が繋がっている様子が撮影されています。
気の遠くなるような、地道な作業だったんだろうなあ…と思わずにはいられません。この写真を撮るために何時間ディスプレイを眺め続けたのでしょうか…。

 

polymAFM6.jpg

(画像は[1]より)

 

さらに、分岐状高分子のAFM観察もDeffieuxらにより報告されています。分岐状高分子は東京工業大学の平尾らが合成したもので、アニオン重合を用いてどんどん分岐を作り上げていき、最終的には分子量1430万、末端の数が7600という、とんでもないサイズの分岐状高分子を合成しています。
これだけ分岐があり分子量が大きいのですが、(分取を行ってはいますが)分子量分布は1.08と小さく、分岐構造が精密に制御されていることが分かります。ここまでくるともう職人芸の世界ですね。

 

合成が職人芸なら、AFM観察も職人芸です。この分岐状高分子を観察して、下のような写真が撮影されています。今回合成された分岐状高分子は4つの部分に分かれることが分かりますが、確かにAFM写真でも4つの部分に分かれている様子が見て取れます。

 

polymAFM7.jpg

(画像は[2]のGraphycal Abstractより)

 

平尾先生の講演会でこの分岐状高分子の合成についての話を伺ったので補足を少し。初め、末端の分子密度が高いために、ボール状の高分子になるのではないか、ということで合成したそうです。しかし、実際に観察してみると自分の重さで潰れてしまったために、写真にあるように4つの部分に分かれている様子のみが観察されたようです。この場合、高分子自身の重さだけでなく、基板との相互作用なども高分子の形態に大きな影響を与えるようです。

グラフトにより主鎖を太くしたり、分子を大きくすることでAFM観察を行う方法を取り上げましたが、高分子に電荷を持たせたり、蛍光部位を導入したりすることでも高分子の観察が可能になります。

最近は合成技術の進歩もあり、高分子の化学構造だけではなく、分子鎖全体の構造にも興味が持たれるようになってきており、なによりの合成の証明になるので、高分子を”見る”技術が重要になってきています。

一方で、顕微鏡のイメージング技術も高まってきており、近年は、TEMで低分子1つを直接観察したという報告もなされています[3]。

高分子に限らず、様々な分子を”見る”ことができるようになれば、研究だけでなく教育や一般の方への情報発信にも有用になるのでは、と思います。

 

関連文献

  1. Schappacher, M.; Def?eux, A. Angew. Chem. Int. Ed. 2009, 48, 5930. doi:10.1002/anie.200900704
  2. Def?eux, A.; Schappacher, M.; Hirao, A.; Watanabe, T. J. Am. Chem. Soc. 2008, 130, 5670. doi:10.1021/ja800881k
  3. Nakamura, E.; Koshino, M.; Tanaka, T.; Niimi, Y.; Harano, K.; Nakamura, Y.; Isobe, H.  J. Am. Chem. Soc. 2008, 130, 7808. doi:10.1021/ja8022708
The following two tabs change content below.
suiga
高分子合成と高分子合成の話題を中心にご紹介します。基礎研究・応用研究・商品開発それぞれの面白さをお伝えしていきたいです。

関連記事

  1. シェールガスにかかわる化学物質について
  2. 小スケールの反応で気をつけるべきこと
  3. HACCP制度化と食品安全マネジメントシステムーChemical…
  4. 周期表の形はこれでいいのか? –上下逆転した周期表が提案される–…
  5. 肝はメチル基!? ロルカセリン
  6. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  7. セブンシスターズについて① ~世を統べる資源会社~
  8. 少量の塩基だけでアルコールとアルキンをつなぐ

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 触媒的C-H酸化反応 Catalytic C-H Oxidation
  2. 【動画】元素のうた―日本語バージョン
  3. トリス(トリフェニルホスフィン)ロジウム(I) クロリド:Tris(triphenylphosphine)rhodium(I) Chloride
  4. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  5. 化学研究ライフハック:Twitter活用のためのテクニック
  6. ホフマン転位 Hofmann Rearrangement
  7. エドマン分解 Edman Degradation
  8. 軽量・透明・断熱!エアロゲル(aerogel)を身近に
  9. 美麗な元素のおもちゃ箱を貴方に―『世界で一番美しい元素図鑑』
  10. ピーター・ジーバーガー Peter H. Seeberger

関連商品

注目情報

注目情報

最新記事

研究室でDIY!~エバポ用真空制御装置をつくろう~ ③

さて、前回に引き続いて、「エバポ用真空制御装置の自作」に挑戦しています。前回までの記事では、…

AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~

AIの機械学習による創薬が化学業界で注目を集めています。2019年3月に米国サンフランシスコで開催さ…

特長のある豊富な設備:ライトケミカル工業

1. 高粘度撹拌、高温・高圧・高真空に対応可能な反応釜高粘度でも撹拌できる大容量攪拌機と効率用除…

ライトケミカル工業2021年採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

中高生・高専生でも研究が学べる!サイエンスメンタープログラム

研究室に入って本格的な研究を始めるのは、大学4年生からが一般的。でも最近は、中高生が研究に取り組める…

ジャーナル編集ポリシーデータベース「Transpose」

およそ3000誌のジャーナル編集ポリシーをまとめたデータベース「Transpose」が、この6月に公…

Chem-Station Twitter

PAGE TOP