[スポンサーリンク]

スポットライトリサーチ

複雑にインターロックした自己集合体の形成機構の解明

[スポンサーリンク]

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお願いしました。

平岡研究室は独自の構成ユニットを用いる自己組織化錯体の合成とその原理解明、それが創り出す孤立ナノ空間の活用に取り組んでいます。今回取り上げる研究は、通常非常に追跡困難な超分子錯体の自己組織化機構解明に注力したものであり、Communications Chemistry誌に掲載され、プレスリリースとして公表されております。

“Self-assembly process of a quadruply interlocked palladium cage”
Tateishi, T.; Yasutake, Y.; Kojima, T.; Takahashi, S.; Hiraoka. S.  Commun. Chem. 2019, 2, 25. doi:10.1038/s42004-019-0123-6

研究室を指揮される平岡秀一教授より、立石さんについての人物評を頂いています。今回も現場からのコメントをご堪能下さい!

立石君は、4年生から分子自己集合がどうやって起こるのかという研究を立ち上げ期から取り組んでくれ、今では頼りになる学生の一人です。彼はこれまでに弱音を吐いたり、諦めたりしたことは一度たりともなく、根気強くかつ論理的に問題に取り組む姿勢にはいつも感心します。また、研究室のすべての後輩からも心から慕われ、相手のことを親身に考えて、自分のことを多少は犠牲にしてでも、面倒をみる大きな心と責任感の持ち主でもあります。将来、素晴らしい研究者になってくれるのではないかと期待している学生です。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

分子自己集合は複雑な幾何構造の分子を作り上げるのに最も効率的な手法の一つですが、「どうやって分子自己集合が進行しているのか?」という反応機構に関する議論はほとんど行われていません。この原因の一つとして、自己集合の過程で形成しうる中間体の数と種類が膨大であり、定量的に追跡して調べることが実質的に不可能な点があげられます。そこで近年我々は、原系と生成系を1H NMRによって定量し、その物質収支の差し引きから時間推移で中間体全体の情報をあぶりだす手法、QASAP (Quantitative analysis of self-assembly process) を開発し、自己集合性錯体の形成機構の解明を進めています(図1)[1]。

図1. QASAPの概略図

本研究では、4つのPd(II)イオンと8つの配位子1が自己集合して生成する、2つのPd214かご型分子(Cage)が四重にインターロックしたPd418インターロックかご型錯体(IC)[2]の形成機構を、QASAPを用いて明らかにしました。反応初期段階では一時的に不完全なPd214X (Xは脱離配位子) かご型錯体(PC)とCageが共存して形成し、その後PCがCageに貫入すると部分的にインターロックしたPd418Xかご型錯体(PIC)を形成します。最終的に、PICの構造内での結合の組み替えを通じてさらなるインターロックが進み、ICが熱力学的最安定種として形成することを明らかにしました(図2)。

図2. Pd418インターロックかご型錯体(IC)の形成機構の概略図

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

QASAPは「”見えない”中間体」についての情報を間接的にあぶり出す手法です。そのため、自己集合の過程で”見えない”分子たちの間でどんな反応が起きているのか?と思いを馳せる必要があります。この、自己集合過程のストーリーを組み立てるプロセスはいつも刺激的で、思い入れがあります。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

Pd418 ICの形成機構の中で鍵となるPd214X PCとPd418X PICに関する直接的な実験証拠がとれなかったところです。原系と生成系の物質収支からこれらの種が系中に存在することは示されているものの、NMRでも質量分析でもPd214XとPd418Xに対応する信号が全く観測できませんでした。論文投稿の際にこの点を査読者に指摘され、revisionの追加実験として質量分析でイオン化が起こるギリギリまで温和な測定条件を探したのを思い出します。結局信号は観測することができず、(1) 脱離配位子Xの弱い配位力が原因でイオン化の過程で脱離する。 (2) 質量分析では[Pd418(BF4)]7+の信号が反応開始30分から観測されるものの1H NMRでは反応開始5時間からICの形成が確認されている。 この(1), (2)の二つの状況証拠から、「30分での質量分析の[Pd418(BF4)]7+の信号はPd418 ICではなく中間体、つまりPd418X PICからイオン化の過程でXが外れてしまって生じる、ICとは幾何構造が異なるPd418種に由来するものに違いない」という結論に達し、acceptanceまでこぎつけることができました。

Q4. 将来は化学とどう関わっていきたいですか?

分子レベルのモノ作り自体ももちろん魅力的ですが、化学の力を使って何かを理解する、何か面白い現象を起こすという方向に興味があります。今はまだこのような漠然とした考えですが、分野を限らず、この先も自分自身が滾るような研究ができれば幸せだろうなと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究に没頭することは研究者として大切なことの一つですが、研究に直接関係の無い趣味を持つのも、健康的に研究を続けるにあたり大事なことであると感じました。私は音楽を聴くのが好きで、本研究の作業中も、好きな曲の一つであるdj newtown氏の”dream”内の「もうひと頑張りで、きっと夢は叶うよ!」のフレーズに幾度となく励まされました。
最後になりましたが、この度本研究をChem-Station様に取り上げていただき、心より感謝いたします。今回の研究は指導教員である平岡秀一先生、また、小島達央先生、高橋聡先生をはじめとする研究室および関係各位の皆様のご協力のもとで進められました。また、広島大学の関谷亮先生にも議論にご協力いただきました。改めて深く御礼申し上げます。

参考文献

  1.  (a) Tsujimoto, Y.; Kojima, T.; Hiraoka, S. Chem. Sci. 2014, 5, 4167–4172. (b) Hiraoka, S. Chem. Rec. 2015, 15, 1144–1147. (c) Hiraoka, S. Bull. Chem. Soc. Jpn. 2018, 91, 957–978. (d) Hiraoka, S. Isr. J. Chem. 2019, 59, 151–165.
  2. Sekiya, R.; Fukuda, M.; Kuroda, R. J. Am. Chem. Soc. 2012, 134, 10987–10997.

研究者の略歴

名前:立石 友紀
所属:東京大学大学院総合文化研究科広域科学専攻 平岡研究室 D2
研究テーマ:自己集合性錯体の形成機構の解明

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Wiley社の本が10%割引キャンペーン中~Amazon~
  2. センチメートルサイズで均一の有機分子薄膜をつくる!”…
  3. 今年は国際周期表年!
  4. 企業の研究開発のつらさ
  5. 第95回日本化学会付設展示会ケムステキャンペーン!Part II…
  6. ハニートラップに対抗する薬が発見される?
  7. 低投資で効率的な英語学習~有用な教材は身近にある!
  8. 【書籍】10分間ミステリー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ヒノキチオール (hinokitiol)
  2. 冬のナノテク関連展示会&国際学会情報
  3. 堂々たる夢 世界に日本人を認めさせた化学者・高峰譲吉の生涯
  4. 化学探偵Mr.キュリー7
  5. 一重項分裂 singlet fission
  6. 特許の基礎知識(1)そもそも「特許」って何?
  7. カルベンで挟む!
  8. 研究助成金を獲得する秘訣
  9. 第四回 期待したいものを創りだすー村橋哲郎教授
  10. 「赤チン」~ある水銀化合物の歴史~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

高機能性金属錯体が拓く触媒科学:革新的分子変換反応の創出をめざして

(さらに…)…

フィブロイン Fibroin

フィブロイン(Fibroin)は、繭糸(シルク)の主成分であり、繊維状タンパク質の一種である。…

「もはや有機ではない有機材料化学:フルオロカーボンに可溶な材料の創製」– MIT・Swager研より

ケムステ海外研究記の第36回はマサチューセッツ工科大学(MIT)化学科のPhD課程に在籍されている吉…

八木 政行 Masayuki Yagi

八木 政行(やぎ まさゆき、Yagi Masayuki、1968年 -)は、日本の化学者である (写…

有機化学を俯瞰する –古代ギリシャ哲学から分子説の誕生まで–【前編】

本連載では、生命体を特別視する "生気説" が覆されたことにより、有機合成化学の幕が開いたことについ…

第92回―「金属錯体を結合形成触媒へ応用する」Rory Waterman教授

第92回の海外化学者インタビューは、ロリー・ウォーターマン教授です。バーモント大学化学科に在籍し、有…

第五回ケムステVシンポジウム「最先端ケムバイオ」を開催します!

コロナウイルスの自粛も全国で解かれ、日本国内はだいぶ復帰に近づいてました(希望的観測)。しかし今年度…

ボロン酸エステルをモノ・ジフルオロメチル基に変える

ボロン酸エステルを原料としたモノ、ジフルオロメチル化反応が開発された。立体特異的に進行する本反応では…

Chem-Station Twitter

PAGE TOP