[スポンサーリンク]

化学者のつぶやき

ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への適用

[スポンサーリンク]

2017年、ケンブリッジ大学・Steven V. Leyらは、ルイス塩基触媒と可視光レドックス触媒のデュアル触媒システムを用いて、酸化困難なボロン酸・ボロン酸エステルから炭素ラジカルを生成させ、炭素―炭素結合形成反応に用いることに成功した。

“A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters”
Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.*; Ley, S. V.* Angew. Chem. Int. Ed. 2017, 56, 15136-15140. doi:10.1002/anie.201709690

問題設定

可視光レドックス触媒によって炭素ラジカルを生成させる手法は近年研究が進んでいるが、酸化的条件で生成させる場合には、アニオン型原料がよく用いられる。その中でも有機トリフルオロボレート塩(R-BF3)は、炭素ラジカル源として研究が進んでいる[1]。その一方で、より汎用性の高いボロン酸やそのエステルについては酸化されづらいため、この目的ではほとんど活用されていない。例外として、当量の強力な酸化剤や電気化学的手法を用いた報告がいくつか知られるのみであった。

技術や手法の肝

ボロン酸(またはボロン酸エステル)を酸化するには、冒頭図のようにトリフルオロボレート塩のように電子豊富ホウ素中心にする必要がある。著者らは以前、当量のルイス塩基を用いることでボロン酸エステルが1電子酸化できることを示していた[2]。

今回の報告ではルイス塩基の触媒化に成功し、Giese反応に適用することで炭素―炭素結合形成を達成している。

主張の有効性検証

①反応条件の最適化

様々なルイス塩基を検討した結果、キヌクリジノールを最適なルイス塩基触媒として同定した。対照実験から、光触媒、ルイス塩基、光照射の存在はすべて必要であることが示されている。メタノールを溶媒量添加することで、ボロン酸エステルの変換率、ルイス塩基触媒の回転率向上が達成された。最終的に下記の条件を最適条件として決定した。


②基質一般性の検討

アルキルボロン酸エステルを使えば様々なアルキル化(ベンジル位、ヘテロ原子α位、3級ベンジル位など)が可能である。ボロン酸を原料とした場合はよりラジカル生成の難しいアリール化・アルキル化ともに中程度から高収率で進行る。最適なルイス塩基触媒は用いる原料によって微妙に違うが、大きな差はなさそうである。

③反応機構解析

ボロン酸6aは、まず速やかにボロキシン6a’を形成する(メタノールによって加速される。NMR実験により確認)。このボロキシン6a’もしくはボロン酸エステル6bが、ルイス塩基複合体7を形成する。Ir触媒の励起酸化電位はE = +0.81V、ボロン酸6aはE=+1.43Vであり、直接の1電子酸化が難しいことは合理化される。7から炭素ラジカル8が生成後、電子不足オレフィンでトラップされて安定化された炭素ラジカル11を生じる。これをを還元してアニオン12となり、メタノールによってプロトン化され、目的物13となる。生じるメトキシドアニオンがルイス塩基を再生させ、触媒化が達成されている。

冒頭論文より引用

議論すべき点

  • ボロキシンはルイス酸性がボロン酸・ボロン酸エステルに比べて高いためにルイス塩基触媒との反応性が高く、基質一般性も広がる傾向にある。ボロン酸エステルではベンジルやヘテロα位、3級炭素上といったラジカルが安定なものでしか反応できていない。酸化ポテンシャルの調整が難しいのか?
  • メタノールをプロトン源+ルイス塩基の再生に活用する点は興味深いが、プロトン性溶媒に弱い基質へのアプリケーションが限られてしまうかもしれない。ルイス塩基触媒を再生させる別法、および立体制御法が今後の課題だろう。

参考論文

  1. Molander, G. A. J. Org. Chem. 2015, 80, 7837. DOI: 10.1021/acs.joc.5b00981
  2. Lima, F.;  Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.;  Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem. Int. Ed. 2016, 55, 14085. doi:10.1002/anie.201605548

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ホウ素が隣接した不安定なカルベン!ジボリルカルベンの生成
  2. アメリカで Ph.D. を取る -Visiting Weeken…
  3. 2007年度ノーベル化学賞を予想!(2)
  4. 極薄のプラチナナノシート
  5. がん細胞をマルチカラーに光らせる
  6. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  7. 分析化学科
  8. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ムギネ酸は土から根に鉄分を運ぶ渡し舟
  2. 近赤外吸収色素が持つ特殊な電子構造を発見―長波長の近赤外光を吸収可能な色素開発へ―
  3. 「男性型脱毛症薬が登場」新薬の承認を審議
  4. 第52回「薬として働く人工核酸を有機化学的に創製する」和田 猛教授
  5. ナイロンに関する一騒動 ~ヘキサメチレンジアミン供給寸断
  6. 第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士
  7. コロナウイルスCOVID-19による化学研究への影響を最小限にするために
  8. 常温常圧でのアンモニア合成の実現
  9. 飽和C–H結合を直接脱離基に変える方法
  10. 大学院生が博士候補生になるまでの道のり【アメリカで Ph.D. を取る –Qualification Exam の巻 前編】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年8月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

Ti触媒、結合切って繋げて二刀流!!アルコールの脱ラセミ化反応

LMCTを介したTi触媒によるアルコールの光駆動型脱ラセミ化反応が報告された。単一不斉配位子を用いた…

シモン反応 Simon reaction

シモン反応 (Simon reaction) は、覚醒剤の簡易的検出に用いられる…

Marcusの逆転領域で一石二鳥

3+誘導体はMarcusの逆転領域において励起状態から基底状態へ遷移することが実証された。さらに本錯…

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP