[スポンサーリンク]

化学者のつぶやき

ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への適用

2017年、ケンブリッジ大学・Steven V. Leyらは、ルイス塩基触媒と可視光レドックス触媒のデュアル触媒システムを用いて、酸化困難なボロン酸・ボロン酸エステルから炭素ラジカルを生成させ、炭素―炭素結合形成反応に用いることに成功した。

“A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters”
Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.*; Ley, S. V.* Angew. Chem. Int. Ed. 2017, 56, 15136-15140. doi:10.1002/anie.201709690

問題設定

可視光レドックス触媒によって炭素ラジカルを生成させる手法は近年研究が進んでいるが、酸化的条件で生成させる場合には、アニオン型原料がよく用いられる。その中でも有機トリフルオロボレート塩(R-BF3)は、炭素ラジカル源として研究が進んでいる[1]。その一方で、より汎用性の高いボロン酸やそのエステルについては酸化されづらいため、この目的ではほとんど活用されていない。例外として、当量の強力な酸化剤や電気化学的手法を用いた報告がいくつか知られるのみであった。

技術や手法の肝

ボロン酸(またはボロン酸エステル)を酸化するには、冒頭図のようにトリフルオロボレート塩のように電子豊富ホウ素中心にする必要がある。著者らは以前、当量のルイス塩基を用いることでボロン酸エステルが1電子酸化できることを示していた[2]。

今回の報告ではルイス塩基の触媒化に成功し、Giese反応に適用することで炭素―炭素結合形成を達成している。

主張の有効性検証

①反応条件の最適化

様々なルイス塩基を検討した結果、キヌクリジノールを最適なルイス塩基触媒として同定した。対照実験から、光触媒、ルイス塩基、光照射の存在はすべて必要であることが示されている。メタノールを溶媒量添加することで、ボロン酸エステルの変換率、ルイス塩基触媒の回転率向上が達成された。最終的に下記の条件を最適条件として決定した。


②基質一般性の検討

アルキルボロン酸エステルを使えば様々なアルキル化(ベンジル位、ヘテロ原子α位、3級ベンジル位など)が可能である。ボロン酸を原料とした場合はよりラジカル生成の難しいアリール化・アルキル化ともに中程度から高収率で進行る。最適なルイス塩基触媒は用いる原料によって微妙に違うが、大きな差はなさそうである。

③反応機構解析

ボロン酸6aは、まず速やかにボロキシン6a’を形成する(メタノールによって加速される。NMR実験により確認)。このボロキシン6a’もしくはボロン酸エステル6bが、ルイス塩基複合体7を形成する。Ir触媒の励起酸化電位はE = +0.81V、ボロン酸6aはE=+1.43Vであり、直接の1電子酸化が難しいことは合理化される。7から炭素ラジカル8が生成後、電子不足オレフィンでトラップされて安定化された炭素ラジカル11を生じる。これをを還元してアニオン12となり、メタノールによってプロトン化され、目的物13となる。生じるメトキシドアニオンがルイス塩基を再生させ、触媒化が達成されている。

冒頭論文より引用

議論すべき点

  • ボロキシンはルイス酸性がボロン酸・ボロン酸エステルに比べて高いためにルイス塩基触媒との反応性が高く、基質一般性も広がる傾向にある。ボロン酸エステルではベンジルやヘテロα位、3級炭素上といったラジカルが安定なものでしか反応できていない。酸化ポテンシャルの調整が難しいのか?
  • メタノールをプロトン源+ルイス塩基の再生に活用する点は興味深いが、プロトン性溶媒に弱い基質へのアプリケーションが限られてしまうかもしれない。ルイス塩基触媒を再生させる別法、および立体制御法が今後の課題だろう。

参考論文

  1. Molander, G. A. J. Org. Chem. 2015, 80, 7837. DOI: 10.1021/acs.joc.5b00981
  2. Lima, F.;  Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.;  Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem. Int. Ed. 2016, 55, 14085. doi:10.1002/anie.201605548
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  2. 金属キラル中心をもつ可視光レドックス不斉触媒
  3. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  4. Illustrated Guide to Home Chemis…
  5. 名古屋市科学館で化学してみた
  6. 糖鎖を直接連結し天然物をつくる
  7. サイエンスアゴラ2015総括
  8. Reaction Plus:生成物と反応物から反応経路がわかる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学遺産財団
  2. 環状アミンを切ってフッ素をいれる
  3. ダグ・ステファン Douglas W. Stephan
  4. 手術中にガン組織を見分ける標識試薬
  5. 第93回日本化学会付設展示会ケムステキャンペーン!Part II
  6. リガンドによりCO2を選択的に導入する
  7. これならわかる マススペクトロメトリー
  8. 2004年ノーベル化学賞『ユビキチン―プロテアソーム系の発見』
  9. 一家に1枚周期表を 理科離れ防止狙い文科省
  10. 還元的にアルケンを炭素官能基で修飾する

関連商品

注目情報

注目情報

最新記事

学部4年間の教育を振り返る

皆様、いかがお過ごしでしょうか。学部4年生の筆者は院試験も終わり、卒論作成が本格的に始まるまでの束の…

ダイセルが開発した新しいカラム: DCpak PTZ

ダイセルといえば「キラルカラムの雄」として知られており、光学活性化合物を分離するキラルカラム「CHI…

台湾当局、半導体技術の対中漏洩でBASFの技術者6人を逮捕

台湾の内政部(内政省)刑事局は7日、半導体製造に使う特殊な化学品の技術を中国企業に漏洩した営業秘密法…

「低分子医薬品とタンパク質の相互作用の研究」Harvard大学 Woo研より

海外留学記第29回目は、Harvard大学のChiristina Woo研に留学されている天児由佳さ…

科博特別展「日本を変えた千の技術博」にいってきました

上野公園内の日本科学博物館で開催されている「日本を変えた千の技術博」をみてきました。科博の特…

ケミカルメーカーのライフサエンス事業戦略について調査結果を発表

 この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、ケミ…

Chem-Station Twitter

PAGE TOP