[スポンサーリンク]

化学者のつぶやき

ルイス塩基触媒によるボロン酸の活性化:可視光レドックス触媒系への適用

[スポンサーリンク]

2017年、ケンブリッジ大学・Steven V. Leyらは、ルイス塩基触媒と可視光レドックス触媒のデュアル触媒システムを用いて、酸化困難なボロン酸・ボロン酸エステルから炭素ラジカルを生成させ、炭素―炭素結合形成反応に用いることに成功した。

“A Lewis Base Catalysis Approach for the Photoredox Activation of Boronic Acids and Esters”
Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.*; Ley, S. V.* Angew. Chem. Int. Ed. 2017, 56, 15136-15140. doi:10.1002/anie.201709690

問題設定

可視光レドックス触媒によって炭素ラジカルを生成させる手法は近年研究が進んでいるが、酸化的条件で生成させる場合には、アニオン型原料がよく用いられる。その中でも有機トリフルオロボレート塩(R-BF3)は、炭素ラジカル源として研究が進んでいる[1]。その一方で、より汎用性の高いボロン酸やそのエステルについては酸化されづらいため、この目的ではほとんど活用されていない。例外として、当量の強力な酸化剤や電気化学的手法を用いた報告がいくつか知られるのみであった。

技術や手法の肝

ボロン酸(またはボロン酸エステル)を酸化するには、冒頭図のようにトリフルオロボレート塩のように電子豊富ホウ素中心にする必要がある。著者らは以前、当量のルイス塩基を用いることでボロン酸エステルが1電子酸化できることを示していた[2]。

今回の報告ではルイス塩基の触媒化に成功し、Giese反応に適用することで炭素―炭素結合形成を達成している。

主張の有効性検証

①反応条件の最適化

様々なルイス塩基を検討した結果、キヌクリジノールを最適なルイス塩基触媒として同定した。対照実験から、光触媒、ルイス塩基、光照射の存在はすべて必要であることが示されている。メタノールを溶媒量添加することで、ボロン酸エステルの変換率、ルイス塩基触媒の回転率向上が達成された。最終的に下記の条件を最適条件として決定した。


②基質一般性の検討

アルキルボロン酸エステルを使えば様々なアルキル化(ベンジル位、ヘテロ原子α位、3級ベンジル位など)が可能である。ボロン酸を原料とした場合はよりラジカル生成の難しいアリール化・アルキル化ともに中程度から高収率で進行る。最適なルイス塩基触媒は用いる原料によって微妙に違うが、大きな差はなさそうである。

③反応機構解析

ボロン酸6aは、まず速やかにボロキシン6a’を形成する(メタノールによって加速される。NMR実験により確認)。このボロキシン6a’もしくはボロン酸エステル6bが、ルイス塩基複合体7を形成する。Ir触媒の励起酸化電位はE = +0.81V、ボロン酸6aはE=+1.43Vであり、直接の1電子酸化が難しいことは合理化される。7から炭素ラジカル8が生成後、電子不足オレフィンでトラップされて安定化された炭素ラジカル11を生じる。これをを還元してアニオン12となり、メタノールによってプロトン化され、目的物13となる。生じるメトキシドアニオンがルイス塩基を再生させ、触媒化が達成されている。

冒頭論文より引用

議論すべき点

  • ボロキシンはルイス酸性がボロン酸・ボロン酸エステルに比べて高いためにルイス塩基触媒との反応性が高く、基質一般性も広がる傾向にある。ボロン酸エステルではベンジルやヘテロα位、3級炭素上といったラジカルが安定なものでしか反応できていない。酸化ポテンシャルの調整が難しいのか?
  • メタノールをプロトン源+ルイス塩基の再生に活用する点は興味深いが、プロトン性溶媒に弱い基質へのアプリケーションが限られてしまうかもしれない。ルイス塩基触媒を再生させる別法、および立体制御法が今後の課題だろう。

参考論文

  1. Molander, G. A. J. Org. Chem. 2015, 80, 7837. DOI: 10.1021/acs.joc.5b00981
  2. Lima, F.;  Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.;  Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem. Int. Ed. 2016, 55, 14085. doi:10.1002/anie.201605548
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. アクリルアミド類のanti-Michael型付加反応の開発ーPd…
  2. 2023年度 第23回グリーン・サステイナブル ケミストリー賞 …
  3. 半導体領域におけるマテリアルズ・インフォマティクスの活用-レジス…
  4. 概日リズムを司る天然変性転写因子の阻害剤開発に成功
  5. 「ドイツ大学論」 ~近代大学の根本思想とは~
  6. 2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 …
  7. 2残基ずつペプチド鎖を伸長できる超高速マイクロフロー合成法を開発…
  8. 転位のアスレチック!(–)-Retigeranic acid A…

注目情報

ピックアップ記事

  1. 基礎材料科学
  2. マイクロリアクターで新時代!先取りセミナー 【終了】
  3. 第22回次世代を担う有機化学シンポジウム
  4. フェルキン・アーン モデル Felkin-Anh Model
  5. ノーベル医学生理学賞、米の2氏に
  6. 論文投稿・出版に役立つ! 10の記事
  7. ロバート・バーグマン Robert G. Bergman
  8. 京のX線分析装置、国際標準に  島津製・堀場、EU環境規制で好調
  9. ナノ合金の結晶構造制御法の開発に成功 -革新的材料の創製へ-
  10. 来年は世界化学年:2011年は”化学の年”!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年8月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

もう一歩先へ進みたい人の化学でつかえる線形代数

概要化学分野の諸問題に潜む線形代数の要素を,化学専攻の目線から解体・解説する。(引用:コロナ…

ノーベル賞受賞者と語り合う5日間!「第17回HOPEミーティング」参加者募集!

今年もHOPEミーティングの参加者募集の時期がやって来ました。HOPEミーティングは、博士課…

熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用

第664回のスポットライトリサーチは、京都大学大学院理学研究科(化学研究所・山田研究室)博士後期課程…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP