[スポンサーリンク]

スポットライトリサーチ

新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次元芳香族性の発現~

[スポンサーリンク]

第222回のスポットライトリサーチは、名古屋大学 忍久保研究室で博士後期課程を修了された野澤遼(のざわ りょう)さんにお願いしました。

名古屋大学 忍久保研究室では、ポルフィリン様化合物に注目し、有機π電子化合物の合成から機能性・反応性の開拓まで幅広く研究を展開されています。

芳香族性は研究の歴史は深いものの、未だにその概念の本質や物性のコントロールについてはやるべきことが多く残されており、古くて新しい研究対象です。野澤さんは以前にもスポットサイトリサーチでご寄稿いただいたことがあり、そのときは反芳香族性の分子を繋ぐことで三次元的な芳香族性を発現し、反芳香族を弱めることができたという報告でした。今回は反芳香族性の分子を積層させたら芳香族性を示したという、シンプルながらにインパクトの大きい素晴らしい成果で、Nature Communications誌に掲載されています。名古屋大学よりプレスリリースされています。

“Three-dimensional aromaticity in an antiaromatic cyclophane”
Ryo Nozawa, Jinseok Kim, Juwon Oh, Anna Lamping, Yemei Wang, Soji Shimizu, Ichiro Hisaki, Tim Kowalczyk, Heike Fliegl, Dongho Kim & Hiroshi Shinokubo
Nature Communications, 2019, 10, 3576. DOI: 10.1038/s41467-019-11467-4

綺麗に積層させられた分子構造の美しさが目をひきますね!

忍久保洋教授からは野澤さんと本研究成果について、以下のようにコメントをいただきました。

やっぱり野澤君は野心家です。前回合成したノルコロール二量体に飽き足らず、今回はついに芳香族性を示す反芳香族シクロファンの合成を達成しました。しかし、その合成ルートはやや強引なものです。彼がこのルートを提案したときには、正直難しいだろうと思いました。それを実際に作ってくるのですから、何か持っているのでしょうね。現在は企業で働いていますが、大きなネタを掴んでくれると思います。

それでは、野澤さんからのメッセージ(ちょっとお茶目なエピソードを含む)をご覧ください!

Q1. 今回のプレスリリース対象となったのはどのような研究ですか?

二重結合が環状に共役した平面化合物は、4n+2個のπ電子をもつヒュッケル芳香族化合物と4n個のπ電子をもつヒュッケル反芳香族化合物の二つに分類されます。ベンゼンに代表される芳香族化合物は高い安定性をもち、これまで基礎から応用まで幅広く研究が展開されています。一方、シクロブタジエンに代表される反芳香族化合物は不安定であり、その研究例は限られています。近年では、ねじれたπ共役系を有するメビウス芳香族化合物[1a]や励起状態での芳香族性[1b]など、ヒュッケル則に従わない非古典的な芳香族化合物に関する研究も盛んに取り組まれています。

このような非古典的な芳香族性の一つに、積層した反芳香族化合物における三次元芳香族性があります。反芳香族化合物であるシクロブタジエンを近接して積層させると芳香族性が発現することが理論計算によって予言されました[2]。しかし、前述の通り、そもそも反芳香族化合物自体が合成困難であるため、積層した反芳香族化合物の合成は達成されておらず、実験的に積層した反芳香族化合物における三次元芳香族性を観測した報告例はありませんでした。

Fig1

私は以前の研究[3]で、ノルコロールと呼ばれる安定な反芳香族化合物をリンカーで連結させた二量体を合成し、積層反芳香族化合物の合成に初めて成功しました。そして、この化合物においてノルコロールの反芳香族性が大きく減少することを明らかにし、理論的に予言されていた三次元芳香族性を垣間見ることができました。しかし、この化合物は弱い反芳香族性を示しており、三次元芳香族化合物とは言えませんでした。そこで、今回私は二つのノルコロールを二ヶ所で連結したノルコロールシクロファンを合成し、この化合物が芳香族性を示すことを明らかにしました。

Fig2.jpg

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

前回の二量体を学会等で発表すると何度か「面白いね。でも、まだ反芳香族だよね。」と指摘され、悔しいと思うのと同時に、もっと人を感動させるような分子を創りたいと思っていました。そこで、前回の二量体を超える分子、自分の中での最強の分子は、何なのかを考え続けました。分子軌道計算と合成のトライ&エラーを何度も繰り返し、この化合物にたどり着くことができました。そのため、この化合物の分子設計には思い入れがあります。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ノルコロールシクロファンの合成です。最終的な合成は、ジピリンニッケル錯体の分子内–分子間カップリング反応によって達成しました。最初は何度反応を仕込んでも、シクロファンが得られませんでした。諦めることなく幾度となく条件を検討することで低収率ではありますが、シクロファンを得ることに成功しました。「私の粘り強さで乗り越えました」と言いたいところですが、この裏にはお寿司の存在があります。なかなかシクロファンの合成ができない時、一緒の部屋で実験していたポスドクの先輩に「そんな化合物できねぇよ。できたら廻らない寿司おごってやるよ」と冗談っぽく言われました(今でも鮮明に覚えています(笑))。絶対廻らない寿司を食べてやるというお寿司への執念?食い意地?から、シクロファン合成にさらに躍起になり、ついに合成することができました。あのお寿司がなければ、シクロファンは合成できていなかったのかもしれません。ごちそうさまでした。

Fig3.jpg

Q4. 将来は化学とどう関わっていきたいですか?

私は2019年3月に博士号を取得し、4月からは化学メーカーに勤務しています。大学とは大きく異なる環境で日々の業務に追われており、学生時代のようにまだ純粋に化学を楽しむことはできてはいません。しかし、私がこれまで感じてきた化学の楽しさ、面白さを忘れずに業務に向き合っていきたいです。また、製品や技術を通して社会に貢献できるものを作れればいいなと思っています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は現在、有機合成とも芳香族化合物とも縁遠い業務に取り組んでいます。先日ふと、学生時代に培ったことは何か活かせるのかなとぼんやり考えていました。残念ながら、これまで身に付けた知識の多くは活かすことはできません。そのような状況の中で私に残されたものは、学生時代に研究を通して養った問題解決力、発想力、研究の感性なのかなと思っています。私自身もそうでしたが研究室生活では、つい目の前の研究に没頭し、周りが見えなくなりがちです。少し俯瞰して、研究を通して何を学べるのか、何を身につけることができるのかを意識して生活するともっと実りある研究室生活を送れるのかなと思います。

最後になりましたが、共同研究でお世話になりました共著の先生方にこの場を借りて御礼申し上げます。また、5年間の研究室生活を通してご指導と激励を賜り、思う存分に化学を満喫させていただいた忍久保洋先生をはじめ忍久保研究室のスタッフの先生方に御礼申し上げます。そして、共に切磋琢磨し、楽しい研究室生活を築いてくれた忍久保研究室の皆様に感謝申し上げます。

関連リンク

関連文献

  1. a) A. Osuka, S. Saito, Commun. 2011, 47, 4330. b) H. Ottosson et al., Chem. Rev. 2014, 114, 5379.
  2. Corminboeuf, P. R. Schleyer, P. Warner, Org. Lett. 2007, 9, 3263.
  3. R. Nozawa, H. Tanaka, W.-Y. Cha, Y. Hong, I. Hisaki, S. Shimizu, J.-Y. Shin, T. Kowalczyk, S, Irle, D. Kim, H. Shinokubo, Nat. Commun. 2016, 7, 13620.

研究者の略歴

野澤 遼(のざわ りょう)RyoNozawa2.jpg

所属:化学メーカー勤務

略歴:

1992年:静岡県静岡市生まれ
2014年3月:岐阜大学工学部応用化学科卒業(村井利昭教授)
2016年3月:名古屋大学大学院工学研究科化学・生物工学専攻博士前期課程修了(忍久保洋教授)

2017年4月~2019年3月:日本学術振興会特別研究員(DC2)

2017年9月~12月:英国Bath大学化学科訪問研究生(Dan Pantoş Senior Lecturer)

2019年3月:名古屋大学大学院工学研究科化学・生物工学専攻博士後期課程修了(忍久保洋教授)

2019年4月~現在:化学メーカー勤務

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. 光応答性リキッドマーブルのマイクロリアクターとしての機能開拓
  2. 有機合成化学協会誌2022年9月号:π-アリルパラジウム・ポリエ…
  3. CYP総合データベース: SuperCYP
  4. ペプチドの革新的合成
  5. 【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核…
  6. アメリカ化学留学 ”立志編 ー留学の種類ー̶…
  7. 分子機械を組み合わせてアメーバ型分子ロボットを作製
  8. 2つのグリニャールからスルホンジイミンを作る

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学の資格もってますか?
  2. E値 Environmental(E)-factor
  3. 変わりゆく化学企業の社名
  4. 花王の多彩な研究成果・研究支援が発表
  5. DIC岡里帆の新作CMが公開
  6. 共役はなぜ起こる?
  7. 【9月開催】第十一回 マツモトファインケミカル技術セミナー   オルガチックスを用いたゾルゲル反応による金属酸化物膜の形成
  8. 松村 保広 Yasuhiro Matsumura
  9. 有機合成化学協会誌2023年4月号:ビニルボロン酸・動的キラル高分子触媒・ホスホニウムイリド・マイクロ波特異効果・モレキュラーシーブ
  10. 被引用回数の多い科学論文top100

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

【十全化学】核酸医薬のGMP製造への挑戦

「核酸医薬」と聞いて、真っ先に思い起こすのは、COVID-19に対するmRNAワ…

十全化学株式会社ってどんな会社?

私たち十全化学は、医薬品の有効成分である原薬及び重要中間体の製造受託を担っている…

化学者と不妊治療

これは理系の夫視点で書いた、私たち夫婦の不妊治療の体験談です。ケムステ読者で不妊に悩まれている方の参…

リボフラビンを活用した光触媒製品の開発

ビタミン系光触媒ジェンタミン®は、リボフラビン(ビタミンB2)を活用した光触媒で…

紅麹を含むサプリメントで重篤な健康被害、原因物質の特定急ぐ

健康食品 (機能性表示食品) に関する重大ニュースが報じられました。血中コレステ…

ユシロ化学工業ってどんな会社?

1944年の創業から培った技術力と信頼で、こっそりセカイを変える化学屋さん。ユシロ化学の事業内容…

日本薬学会第144年会付設展示会ケムステキャンペーン

日本化学会の年会も終わりましたね。付設展示会キャンペーンもケムステイブニングミキ…

ペプチドのN末端でのピンポイント二重修飾反応を開発!

第 605回のスポットライトリサーチは、中央大学大学院 理工学研究科 応用化学専…

材料・製品開発組織における科学的考察の風土のつくりかた ー マテリアルズ・インフォマティクスを活用し最大限の成果を得るための筋の良いテーマとは ー

開催日:2024/03/27 申込みはこちら■開催概要材料開発を取り巻く競争や環境が激し…

石谷教授最終講義「人工光合成を目指して」を聴講してみた

bergです。この度は2024年3月9日(土)に東京工業大学 大岡山キャンパスにて開催された石谷教授…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP