[スポンサーリンク]

スポットライトリサーチ

超高速X線分光が拓く原子レベルの分子動画観測

[スポンサーリンク]

第227回のスポットライトリサーチは、高輝度光科学研究機構 XFEL 利用研究推進室の片山哲夫(かたやま てつお)さんにお願いしました。

通称Spring-8で知られている高輝度光科学研究機構では、近年X線自由電子レーザー(XFEL)の設備が整備され、様々な先端的計測が展開されています。

今回紹介いただける成果からは、超高速X線分光が迎えている新局面を感じ取ることができるでしょう。XFELを利用した超高速X線分光を利用して、銅錯体の光励起後に生じるオングストローム(100億分の1メートル)の構造変化を10 fs(100兆分の1秒)の時間分解能をもって解き明かしたという成果で、Nature Communications誌に掲載されています。プレスリリースも是非ご覧になってみてください!

“Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy”
Tetsuo Katayama, Thomas Northey, Wojciech Gawelda, Christopher J. Milne, György Vankó, Frederico A. Lima, Rok Bohinc, Zoltán Németh, Shunsuke Nozawa, Tokushi Sato, Dmitry Khakhulin, Jakub Szlachetko, Tadashi Togashi, Shigeki Owada, Shin-ichi Adachi, Christian Bressler, Makina Yabashi & Thomas J. Penfold
Nature Communications, 2019, 10, 3606. DOI: 10.1038/s41467-019-11499-w

矢橋先生から、片山さんと本研究成果について、以下のようなコメントをいただきました。

片山さんがSACLAに飛び込んできたのは、 2012年のまさに利用がはじまったタイミングでした。彼は、殆ど更地の状態から、超高速X線分光の実験プラットフォームの開発を成功させ、数年前には既に世界でも名の知られる若手となっていました。 今回の成果は、 これらの最先端の技術を駆使しながら、 未知のフェムトケミストリーに切り込んだものです。 共著者リストにあるように、 海外勢が多数を占める約20名の研究者との国際コラボレーションを率いながら、 大きな成果につなげました。 新しい時代を開拓する旗手の一人として、 さらなる活躍を期待しています。

それでは、片山さんからのメッセージをご覧ください!

Q1. 今回のプレスリリース対象となったのはどのような研究ですか?

光増感剤として期待される銅(I)錯体分子が光吸収した際に起こるコヒーレントな核波束振動をX線分光で捉えた研究です。

光反応において、多次元のポテンシャルエネルギー曲面上を分子がどのように移動しながら構造変化や化学結合の解離/生成[1]を起こすのか?はフェムト秒(fs)化学における重要な問いです。特に光の吸収に伴って発生する核波束は、その後に続いて起こる反応の方向性を決定付ける重要な役割を果たしています。このような超高速で起こる分子の構造変化を直接的に観測するため、我々はX線の波長領域でフェムト秒のパルス幅を持つX線自由電子レーザー(XFEL)を利用しました。X線分光は元素選択的に電子状態と局所構造を決定できるため、通常の紫外~赤外の波長領域のレーザー光を使ったポンプ・プローブ分光法と比べて、より直接的に分子の構造に関する情報を得ることができます。今回の研究では、銅(I)フェナントロリン錯体が正四面体型から平面型へと構造変化する前段階の振動を捉え、振動のタイプによって寿命が違うことや、振幅をサブオングストローム(Å)の精度で評価することに成功しました(図1)。この結果は、原子レベルの時間・空間分解能を持つ分子動画を実現したものであり、様々な光反応の機構解明に繋がると期待しています。

Katayama_Fig1

図1. 銅(I)フェナントロリン錯体の構造変化とX線分光で捉えた核波束振動

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私は2012年から日本で唯一のXFEL施設SACLAで「原子や電子が動く様子を高い空間(Å)・時間(fs)分解能で捉えたい」というモチベーションを持って、技術開発を進めてきました。具体的には、独立した光源であるXFELと可視レーザー光の間に発生するランダムなタイミングの揺らぎ(ジッター)を補正し、時間分解能を光のパルス幅程度まで高める技術(タイミングモニター)[2]です。開発に3~4年ほどかかりましたが、なんとかジッターの影響を10 fs未満まで抑えることができました。苦労して開発したこの技術を使って新たなサイエンスを開拓したい、というのが今回の研究の発端です。実際、自分で開発した技術が本当に役に立つのか不安でしたが、タイミングモニターの有無でデータのクオリティが劇的に変わることがわかった時、取り組んできたことに対する価値を実感しました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

XFEL施設SACLAの利用実験は、ビームタイムが定められています。ビームタイムの申請が通った場合、半年に2.5~3日程度のビームタイムが1回割り当てられますが、やり直しができません。この点でXFELの利用実験は、通常の研究室における研究とスタイルが大きく違います。一発勝負のビームタイムを成功に導くため、様々なバックグラウンドを持つ研究者達を集めて国際的なチームを構成し、研究目的の共有や実験に必要な準備を進めていかなければなりませんでした。特に、当初の目的通りに実験が進まずに苦戦する場合、迅速かつ的確な進路の舵取りが求められます。限られたビームタイムの中、実験を成功に導くため、予め複数の目標を設定してそれらを状況に応じて臨機応変に取捨選択する工夫をしました。今回の結果も複数設定した目標の内の一つです。(実際のところ失敗したテーマもありますが内容は割愛します。)

Q4. 将来は化学とどう関わっていきたいですか?

XFELはこれまでのフェムト秒化学に新たな進化をもたらす強力なツールだと思っています。紫外~赤外の波長領域の超高速分光をX線の波長領域まで拡張することで開ける新たな分野はまだ始まったばかりであり、これを推進できるような研究を展開していきたいと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

XFELは、化学だけでなく生物、物理、物質科学といった広範な学術分野で利用されており、これらを融合させた新分野の創出が期待されています。そのためには、自分の研究領域以外についても視野を広く保ち、様々な研究者と交流することを通して、研究テーマについて知見を積み重ねることが重要だと思います。この記事が皆様にとって「自分だったらXFELをこういう研究に使ってみたい」、「XFELはこういう使い方はできないのだろうか」と考える端緒になれば望外の幸せです。

最後になりますが、本研究を遂行するにあたり素晴らしい研究環境とご協力を頂いている矢橋牧名先生、足立伸一先生にこの場を借りて感謝申し上げます。

参考文献

  1. K. H. Kim et al., Nature 518, 385-389 (2015).
  2. T. Katayama et al., Struct. Dyn. 3, 034301 (2016).

関連リンク

研究者の略歴

片山 哲夫(かたやま てつお)

所属:公益財団法人 高輝度光科学研究センター

専門:超高速X線分光、X線光学

略歴:2010/06 東京大学院新領域創成科学科 博士課程修了
2010/07¬–2012/03 Stanford University postdoctoral researcher
2012/04–2014/12 公益財団法人 高輝度光科学研究センター 客員研究員
2015/01–現在 公益財団法人 高輝度光科学研究センター 研究員

spectol21

投稿者の記事一覧

ニューヨークでポスドクやってました。今は旧帝大JKJ。専門は超高速レーザー分光で、分子集合体の電子ダイナミクスや、有機固体と無機固体の境界、化学反応の実時間観測に特に興味を持っています。

関連記事

  1. ルイスペア形成を利用した電気化学発光の増強
  2. エステルをアルデヒドに変換する新手法
  3. 研究者のためのCG作成術③(設定編)
  4. メルマガ有機化学 (by 有機化学美術館) 刊行中!!
  5. IR情報から読み解く大手化学メーカーの比較
  6. フリー素材の化学イラストを使ってみよう!
  7. シクロヘキサンの片面を全てフッ素化する
  8. カブトガニの血液が人類を救う

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 大学院講義 有機化学
  2. 第57回「製薬会社でVTuber担当?化学者の意外な転身」前川 雄亮 博士
  3. 金属から出る光の色を利用し、食中毒の原因菌を迅速かつ同時に識別することに成功!
  4. 資生堂企業資料館
  5. 第102回―「有機薄膜エレクトロニクスと太陽電池の研究」Lynn Loo教授
  6. なぜクロスカップリングは日本で発展したのか?
  7. ヒューマンエラーを防ぐ知恵 増補版: ミスはなくなるか
  8. 日本薬学会第144回年会「有機合成化学の若い力」を開催します!
  9. 化学産業を担う人々のための実践的研究開発と企業戦略
  10. インタラクティブ物質科学・カデットプログラム第一回国際シンポジウム

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年10月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP