[スポンサーリンク]

化学者のつぶやき

フラーレンの“籠”でH2O2を運ぶ

[スポンサーリンク]

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。

分子内包フラーレン

 フラーレンは構造的美しさもさることながら、その内部空間に単原子や気体分子などを取り込むことができるため、分子カゴとしての機能が注目されている(1)。特に、フラーレンの表面構造を有機合成により開環させることで、自在な分子取り込みが近年可能になりつつある(1)1995年、Wudlらは初めて開環フラーレン1の合成に成功した(2)。しかし開環部が小さく、ヘリウム原子すらも内包できないものであった。2001年にRubinらは大きい開環部をもつフラーレン2を合成し、初めてフラーレン誘導体にヘリウム原子および水素分子を挿入することに成功した(3)。また、2005年に小松らは、フラーレン3が水素を内包できることを見出した(4)。また、3は水素を内部に保ったまま閉環させることで、水素内包フラーレンH2@C60へ導くことが可能である。これらの先駆的な報告を皮切りに、今回の著者であるGanらを含めいくつかのグループが独自の開環部をもつフラーレン誘導体47を合成し、種々の気体分子やH2Oを内包できることを報告している(5–9)(ケムステ関連記事も参照)。しかし、未だ過酸化水素の内包はできていない。これは、過酸化水素が不安定であること、そして、その分解物として生じる活性酸素種が望まぬ副反応を併発してしまうためである。これが原因で、フラーレンに限らず過酸化水素を内包可能な分子容器は未だ報告されていなかった。

 今回、北京大学のGan教授らは、過酸化水素分子を大気圧・室温という温和な条件で挿入可能な新規開環フラーレン誘導体を合成したので紹介する。

図1. フラーレンコンテナ(出典:論文、参考文献、Ganらの研究室HPより引用)

“Oxygen-Delivery Materials: Synthesis of an Open-Cage Fullerene Derivative Suitable for Encapsulation of H2O2and O2

Li, Y.; Lou, N.; Xu, D.; Pan, C.; Lu, X.; Gan, L. B. Angew. Chem., Int. Ed.2018, 57, 14144.

DOI: 10.1002/anie.201808926

論文著者の紹介

研究者:Gan Liangbing

研究者の経歴:
1983   B.Sc., Wuhan University
1989   Ph.D., University of Alberta, Canada
1989–1991   Postdoc, University of Sherbrooke, Canada
1991–1992   Postdoc, Peking University
1993–1997   Assistant Prof., Peking University
1998–   Professor., Peking University
2003.9–2004.2   Croucher Visiting Prof., City University of Hong Kong

研究内容:フラーレンの化学

論文の概要

 フラーレン誘導体9を出発物質とし、還元的条件によるフラーレン骨格の表面構造の化学修飾、続く酸化条件下開口部の環拡大を繰り返して過酸化水素内包型フラーレン8を合成した(2A)。すなわち、ホスフィン酸ナトリウム一水和物/ヨウ化カリウム/ヨウ化銅を用いる還元条件aにより9の過酸部位を還元し、続いて、光増感剤C60と酸素存在下、光照射する酸化条件bにより、中間体10C=C結合の酸化開裂を起こし11を得た。その後再び還元条件aを用いて11を還元的芳香族化させて12とした。最後に酸化条件bにより、C=C結合をもう一つ酸化開裂させることで、8と水分子を内包したH2O@8を合成した。

 合成した8は過酸化水素を加えることで、過酸化水素分子を内包したH2O2@8となる。特筆すべきことに室温・大気圧下で過酸化水素の内包が進行する。8の開環部が過酸化水素分子の挿入に適した楕円型であること、さらに開環部のラクトン、ラクタムとの水素結合により過酸化水素分子が開環部に近付きやすいことが、今回の成功の鍵と考えられている。しかし、この溶液を室温にて数時間放置すると、一部のH2O2@8H2O@8に変化することが確認されており、安定性の面では未だ課題が残っている(2B)

 以上、新規開環フラーレン誘導体を合成し、大気圧・室温という温和な条件で過酸化水素分子を挿入することに成功した。安定性に改善の余地は残すものの、反応性の高い分子の内包に成功した好例と言えるだろう。

図2. 過酸化水素分子内包フラーレン誘導体の合成およびその安定性(出典:論文より引用)

ケムステ関連記事

参考文献

  1. (a)Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun .2008, 0, 6083. DOI:10.1039/b811738a (b)Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev.2010, 39, 817. DOI:10.1039/B913766A(c)Gan,L. B.; Yang, D. Z.; Zhang, Q. Y.; Huang, H. Adv. Mater.2010, 22, 1498. DOI:10.1002/adma.200903705
  2. Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc.1995, 117, 7003. DOI:10.1021/ja00131a024
  3. Rubin, Y.; Jarrosson, T.; Wang, G. W.; Bartberger, M. D.; Houk, K. N.; Schick, G.; Saunders, M.; Cross, R. J. Angew. Chem., Int. Ed.2001, 40, 1543. DOI:10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
  4. Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:1126/science.1106185
  5. Iwamatsu, S.; Stanisky, C. M.; Cross, R. J.; Saunders, M.; Mizorogi, N.; Nagase, S.; Murata, S. Angew. Chem. Int. Ed.2006, 45, 5337. DOI:10.1002/anie.200601241
  6. Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI:1126/science.1206376
  7. Yu, Y.;Shi, L.; Yang, D.; Gan, L. B. Sci. 2013, 4, 814. DOI:10.1039/c2sc21760k
  8. Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistrè, M.; Meier, B.; Kouřil, K.; Light, M. E.; Johnson, M. R.; Rols, S.; Horsewill, A. J.; Shugai, A.; Nagel, U.; Rõõm, T.; Carravetta, M.; Levitt, M. H.; Whitby, R. J. Chem.2016, 8, 953. DOI: 10.1038/nchem.2563
  9. Futagoishi, T.; Aharen, T.; Kato, T.; Kato, A.; Ihara, T.; Tada, T.; Murata, M.; Wakamiya, A.; Kageyama, H.; Kanemitsu, Y.; Murata, Y. Angew. Chem. Int. Ed.2017, 56, 4261. DOI:10.1002/anie.201701212
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 大学の講義を無料聴講! Academic Earth & You…
  2. 不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応
  3. 水から電子を取り出す実力派触媒の登場!
  4. 化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~
  5. ジェフ・ボーディ Jeffrey W. Bode
  6. たるんだ肌を若返らせる薄膜
  7. 「科学者の科学離れ」ってなんだろう?
  8. 有機合成化学協会誌2019年12月号:サルコフィトノライド・アミ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 東北地方太平洋沖地震に募金してみませんか。
  2. 2009年10月人気化学書籍ランキング
  3. 第27回 生命活動の鍵、細胞間の相互作用を解明する – Mary Cloninger教授
  4. キラル超原子価ヨウ素試薬を用いる不斉酸化
  5. エチレンをつかまえて
  6. 生体分子を活用した新しい人工光合成材料の開発
  7. 亜鉛クロロフィル zinc chlorophyll
  8. ジェフリー·ロング Jeffrey R. Long
  9. 池田 富樹 Tomiki Ikeda
  10. 台湾当局、半導体技術の対中漏洩でBASFの技術者6人を逮捕

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
« 10月   12月 »
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに&hellip;)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに&hellip;)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP