[スポンサーリンク]

化学者のつぶやき

フラーレンの“籠”でH2O2を運ぶ

[スポンサーリンク]

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。

分子内包フラーレン

 フラーレンは構造的美しさもさることながら、その内部空間に単原子や気体分子などを取り込むことができるため、分子カゴとしての機能が注目されている(1)。特に、フラーレンの表面構造を有機合成により開環させることで、自在な分子取り込みが近年可能になりつつある(1)1995年、Wudlらは初めて開環フラーレン1の合成に成功した(2)。しかし開環部が小さく、ヘリウム原子すらも内包できないものであった。2001年にRubinらは大きい開環部をもつフラーレン2を合成し、初めてフラーレン誘導体にヘリウム原子および水素分子を挿入することに成功した(3)。また、2005年に小松らは、フラーレン3が水素を内包できることを見出した(4)。また、3は水素を内部に保ったまま閉環させることで、水素内包フラーレンH2@C60へ導くことが可能である。これらの先駆的な報告を皮切りに、今回の著者であるGanらを含めいくつかのグループが独自の開環部をもつフラーレン誘導体47を合成し、種々の気体分子やH2Oを内包できることを報告している(5–9)(ケムステ関連記事も参照)。しかし、未だ過酸化水素の内包はできていない。これは、過酸化水素が不安定であること、そして、その分解物として生じる活性酸素種が望まぬ副反応を併発してしまうためである。これが原因で、フラーレンに限らず過酸化水素を内包可能な分子容器は未だ報告されていなかった。

 今回、北京大学のGan教授らは、過酸化水素分子を大気圧・室温という温和な条件で挿入可能な新規開環フラーレン誘導体を合成したので紹介する。

図1. フラーレンコンテナ(出典:論文、参考文献、Ganらの研究室HPより引用)

“Oxygen-Delivery Materials: Synthesis of an Open-Cage Fullerene Derivative Suitable for Encapsulation of H2O2and O2

Li, Y.; Lou, N.; Xu, D.; Pan, C.; Lu, X.; Gan, L. B. Angew. Chem., Int. Ed.2018, 57, 14144.

DOI: 10.1002/anie.201808926

論文著者の紹介

研究者:Gan Liangbing

研究者の経歴:
1983   B.Sc., Wuhan University
1989   Ph.D., University of Alberta, Canada
1989–1991   Postdoc, University of Sherbrooke, Canada
1991–1992   Postdoc, Peking University
1993–1997   Assistant Prof., Peking University
1998–   Professor., Peking University
2003.9–2004.2   Croucher Visiting Prof., City University of Hong Kong

研究内容:フラーレンの化学

論文の概要

 フラーレン誘導体9を出発物質とし、還元的条件によるフラーレン骨格の表面構造の化学修飾、続く酸化条件下開口部の環拡大を繰り返して過酸化水素内包型フラーレン8を合成した(2A)。すなわち、ホスフィン酸ナトリウム一水和物/ヨウ化カリウム/ヨウ化銅を用いる還元条件aにより9の過酸部位を還元し、続いて、光増感剤C60と酸素存在下、光照射する酸化条件bにより、中間体10C=C結合の酸化開裂を起こし11を得た。その後再び還元条件aを用いて11を還元的芳香族化させて12とした。最後に酸化条件bにより、C=C結合をもう一つ酸化開裂させることで、8と水分子を内包したH2O@8を合成した。

 合成した8は過酸化水素を加えることで、過酸化水素分子を内包したH2O2@8となる。特筆すべきことに室温・大気圧下で過酸化水素の内包が進行する。8の開環部が過酸化水素分子の挿入に適した楕円型であること、さらに開環部のラクトン、ラクタムとの水素結合により過酸化水素分子が開環部に近付きやすいことが、今回の成功の鍵と考えられている。しかし、この溶液を室温にて数時間放置すると、一部のH2O2@8H2O@8に変化することが確認されており、安定性の面では未だ課題が残っている(2B)

 以上、新規開環フラーレン誘導体を合成し、大気圧・室温という温和な条件で過酸化水素分子を挿入することに成功した。安定性に改善の余地は残すものの、反応性の高い分子の内包に成功した好例と言えるだろう。

図2. 過酸化水素分子内包フラーレン誘導体の合成およびその安定性(出典:論文より引用)

ケムステ関連記事

参考文献

  1. (a)Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun .2008, 0, 6083. DOI:10.1039/b811738a (b)Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev.2010, 39, 817. DOI:10.1039/B913766A(c)Gan,L. B.; Yang, D. Z.; Zhang, Q. Y.; Huang, H. Adv. Mater.2010, 22, 1498. DOI:10.1002/adma.200903705
  2. Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc.1995, 117, 7003. DOI:10.1021/ja00131a024
  3. Rubin, Y.; Jarrosson, T.; Wang, G. W.; Bartberger, M. D.; Houk, K. N.; Schick, G.; Saunders, M.; Cross, R. J. Angew. Chem., Int. Ed.2001, 40, 1543. DOI:10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
  4. Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:1126/science.1106185
  5. Iwamatsu, S.; Stanisky, C. M.; Cross, R. J.; Saunders, M.; Mizorogi, N.; Nagase, S.; Murata, S. Angew. Chem. Int. Ed.2006, 45, 5337. DOI:10.1002/anie.200601241
  6. Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI:1126/science.1206376
  7. Yu, Y.;Shi, L.; Yang, D.; Gan, L. B. Sci. 2013, 4, 814. DOI:10.1039/c2sc21760k
  8. Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistrè, M.; Meier, B.; Kouřil, K.; Light, M. E.; Johnson, M. R.; Rols, S.; Horsewill, A. J.; Shugai, A.; Nagel, U.; Rõõm, T.; Carravetta, M.; Levitt, M. H.; Whitby, R. J. Chem.2016, 8, 953. DOI: 10.1038/nchem.2563
  9. Futagoishi, T.; Aharen, T.; Kato, T.; Kato, A.; Ihara, T.; Tada, T.; Murata, M.; Wakamiya, A.; Kageyama, H.; Kanemitsu, Y.; Murata, Y. Angew. Chem. Int. Ed.2017, 56, 4261. DOI:10.1002/anie.201701212
The following two tabs change content below.
山口 研究室
早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アルドール・スイッチ Aldol-Switch
  2. Twitter発!「笑える(?)実験大失敗集」
  3. ふにふにふわふわ☆マシュマロゲルがスゴい!?
  4. 可視光によるC–Sクロスカップリング
  5. 誰でも参加OK!計算化学研究を手伝おう!
  6. 水分解反応のしくみを観測ー人工光合成触媒開発へ前進ー
  7. スイスの博士課程ってどうなの?3〜面接と入学手続き〜
  8. アメリカ大学院留学:実験TAと成績評価の裏側

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. リンダウ会議に行ってきた③
  2. ナノの世界に朗報?!-コラニュレンのkg合成-
  3. 静電相互作用を駆動力とする典型元素触媒
  4. 「原子」が見えた! なんと一眼レフで撮影に成功
  5. 薬物耐性菌を学ぶーChemical Times特集より
  6. 進化する カップリング反応と 応用展開
  7. Hazardous Laboratory Chemicals Disposal Guide
  8. 住友化・大日本住友薬、ファイザーと高血圧症薬で和解
  9. ピリジン同士のラジカル-ラジカルカップリング
  10. 基礎有機化学討論会開催中

関連商品

注目情報

注目情報

最新記事

有機合成化学協会誌2019年11月号:英文版特集号

有機合成化学協会が発行する有機合成化学協会誌、2019年11月号がオンライン公開されました。…

製品開発職を検討する上でおさえたい3つのポイント

基礎研究と製品開発は、目的や役割がそれぞれ異なります。しかし、求人情報の応募要件を見てみると「〇〇の…

二刀流のホスフィン触媒によるアトロプ選択的合成法

不斉付加環化反応による新奇アリールナフトキノン合成法が報告された。2つの機能を有する不斉ホスフィン触…

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

Chem-Station Twitter

PAGE TOP