[スポンサーリンク]

化学者のつぶやき

フラーレンの“籠”でH2O2を運ぶ

[スポンサーリンク]

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。

分子内包フラーレン

 フラーレンは構造的美しさもさることながら、その内部空間に単原子や気体分子などを取り込むことができるため、分子カゴとしての機能が注目されている(1)。特に、フラーレンの表面構造を有機合成により開環させることで、自在な分子取り込みが近年可能になりつつある(1)1995年、Wudlらは初めて開環フラーレン1の合成に成功した(2)。しかし開環部が小さく、ヘリウム原子すらも内包できないものであった。2001年にRubinらは大きい開環部をもつフラーレン2を合成し、初めてフラーレン誘導体にヘリウム原子および水素分子を挿入することに成功した(3)。また、2005年に小松らは、フラーレン3が水素を内包できることを見出した(4)。また、3は水素を内部に保ったまま閉環させることで、水素内包フラーレンH2@C60へ導くことが可能である。これらの先駆的な報告を皮切りに、今回の著者であるGanらを含めいくつかのグループが独自の開環部をもつフラーレン誘導体47を合成し、種々の気体分子やH2Oを内包できることを報告している(5–9)(ケムステ関連記事も参照)。しかし、未だ過酸化水素の内包はできていない。これは、過酸化水素が不安定であること、そして、その分解物として生じる活性酸素種が望まぬ副反応を併発してしまうためである。これが原因で、フラーレンに限らず過酸化水素を内包可能な分子容器は未だ報告されていなかった。

 今回、北京大学のGan教授らは、過酸化水素分子を大気圧・室温という温和な条件で挿入可能な新規開環フラーレン誘導体を合成したので紹介する。

図1. フラーレンコンテナ(出典:論文、参考文献、Ganらの研究室HPより引用)

“Oxygen-Delivery Materials: Synthesis of an Open-Cage Fullerene Derivative Suitable for Encapsulation of H2O2and O2

Li, Y.; Lou, N.; Xu, D.; Pan, C.; Lu, X.; Gan, L. B. Angew. Chem., Int. Ed.2018, 57, 14144.

DOI: 10.1002/anie.201808926

論文著者の紹介

研究者:Gan Liangbing

研究者の経歴:
1983   B.Sc., Wuhan University
1989   Ph.D., University of Alberta, Canada
1989–1991   Postdoc, University of Sherbrooke, Canada
1991–1992   Postdoc, Peking University
1993–1997   Assistant Prof., Peking University
1998–   Professor., Peking University
2003.9–2004.2   Croucher Visiting Prof., City University of Hong Kong

研究内容:フラーレンの化学

論文の概要

 フラーレン誘導体9を出発物質とし、還元的条件によるフラーレン骨格の表面構造の化学修飾、続く酸化条件下開口部の環拡大を繰り返して過酸化水素内包型フラーレン8を合成した(2A)。すなわち、ホスフィン酸ナトリウム一水和物/ヨウ化カリウム/ヨウ化銅を用いる還元条件aにより9の過酸部位を還元し、続いて、光増感剤C60と酸素存在下、光照射する酸化条件bにより、中間体10C=C結合の酸化開裂を起こし11を得た。その後再び還元条件aを用いて11を還元的芳香族化させて12とした。最後に酸化条件bにより、C=C結合をもう一つ酸化開裂させることで、8と水分子を内包したH2O@8を合成した。

 合成した8は過酸化水素を加えることで、過酸化水素分子を内包したH2O2@8となる。特筆すべきことに室温・大気圧下で過酸化水素の内包が進行する。8の開環部が過酸化水素分子の挿入に適した楕円型であること、さらに開環部のラクトン、ラクタムとの水素結合により過酸化水素分子が開環部に近付きやすいことが、今回の成功の鍵と考えられている。しかし、この溶液を室温にて数時間放置すると、一部のH2O2@8H2O@8に変化することが確認されており、安定性の面では未だ課題が残っている(2B)

 以上、新規開環フラーレン誘導体を合成し、大気圧・室温という温和な条件で過酸化水素分子を挿入することに成功した。安定性に改善の余地は残すものの、反応性の高い分子の内包に成功した好例と言えるだろう。

図2. 過酸化水素分子内包フラーレン誘導体の合成およびその安定性(出典:論文より引用)

ケムステ関連記事

参考文献

  1. (a)Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun .2008, 0, 6083. DOI:10.1039/b811738a (b)Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev.2010, 39, 817. DOI:10.1039/B913766A(c)Gan,L. B.; Yang, D. Z.; Zhang, Q. Y.; Huang, H. Adv. Mater.2010, 22, 1498. DOI:10.1002/adma.200903705
  2. Hummelen, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc.1995, 117, 7003. DOI:10.1021/ja00131a024
  3. Rubin, Y.; Jarrosson, T.; Wang, G. W.; Bartberger, M. D.; Houk, K. N.; Schick, G.; Saunders, M.; Cross, R. J. Angew. Chem., Int. Ed.2001, 40, 1543. DOI:10.1002/1521-3773(20010417)40:8<1543::AID-ANIE1543>3.0.CO;2-6
  4. Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. DOI:1126/science.1106185
  5. Iwamatsu, S.; Stanisky, C. M.; Cross, R. J.; Saunders, M.; Mizorogi, N.; Nagase, S.; Murata, S. Angew. Chem. Int. Ed.2006, 45, 5337. DOI:10.1002/anie.200601241
  6. Kurotobi, K.; Murata, Y. Science 2011, 333, 613. DOI:1126/science.1206376
  7. Yu, Y.;Shi, L.; Yang, D.; Gan, L. B. Sci. 2013, 4, 814. DOI:10.1039/c2sc21760k
  8. Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistrè, M.; Meier, B.; Kouřil, K.; Light, M. E.; Johnson, M. R.; Rols, S.; Horsewill, A. J.; Shugai, A.; Nagel, U.; Rõõm, T.; Carravetta, M.; Levitt, M. H.; Whitby, R. J. Chem.2016, 8, 953. DOI: 10.1038/nchem.2563
  9. Futagoishi, T.; Aharen, T.; Kato, T.; Kato, A.; Ihara, T.; Tada, T.; Murata, M.; Wakamiya, A.; Kageyama, H.; Kanemitsu, Y.; Murata, Y. Angew. Chem. Int. Ed.2017, 56, 4261. DOI:10.1002/anie.201701212
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 細胞代謝学術セミナー全3回 主催:同仁化学研究所
  2. 第20回ケムステVシンポ『アカデミア創薬 A to Z』を開催し…
  3. 祝5周年!-Nature Chemistryの5年間-
  4. なれない人たちの言い訳(?)-研究者版-
  5. 薬剤師国家試験にチャレンジ!【有機化学編その2】
  6. 動的な軸不斉を有する大環状ホスト分子
  7. 金属材料・セラミックス材料領域におけるマテリアルズ・インフォマテ…
  8. 有機合成化学協会誌2022年10月号:トリフルオロメチル基・気体…

注目情報

ピックアップ記事

  1. 触媒的syn-ジクロロ化反応への挑戦
  2. フッフッフッフッフッ(F5)、これからはCF3からSF5にスルフィド(S)
  3. 日本薬学会第145年会 に参加しよう!
  4. アンリ・カガン Henri B. Kagan
  5. 名もなきジテルペノイドの初の全合成が導いた構造訂正
  6. 第93回日本化学会付設展示会ケムステキャンペーン!Part II
  7. 化学でもフェルミ推定
  8. みんなおなじみ DMSO が医薬品として承認!
  9. クロスカップリング反応にかけた夢:化学者たちの発見物語
  10. 光触媒による水素生成効率が3%に

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

\課題に対してマイクロ波を試してみたい方へ/オンライン個別相談会

プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波”について、今回は、適用を検討してみ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP