[スポンサーリンク]

スポットライトリサーチ

ピーナッツ型分子の合成に成功!

第117回のスポットライトリサーチ東京工業大学化学生命科学研究所 穐田・吉沢研究室矢崎晃平博士(山梨大学工学部応用化学科 矢崎研究室 特任助教)にお願いしました。

穐田・吉沢研究室は、光触媒反応の開発や、機能性超分子錯体の合成など、多岐に渡る分野で顕著な研究成果を挙げられています。例えば、光触媒を活用した温和な条件でのトリフルオロメチル化反応を開発されており、以前スポットライトリサーチ記事でも取り上げさせていただきました(光触媒に関するスポットライトリサーチ記事はこちら)。さらに、超分子の分野では、「分子ワイヤー・ジャンクション」と呼ばれる電導性を持つ鎖状π共役系分子や、内部に他の分子を収められる球状分子「分子カプセル・チューブ」の合成など、機能性を秘めた美しい形の分子の合成で様々な成果を報告されています。

この度、矢崎先生は、非共有結合性の分子間相互作用をうまく活用することによって、ピーナッツの形をしたユニークな超分子の合成に成功しました。

本成果は、Nature communication誌に掲載され、プレスリリースとしても取り上げられていましたので、インタビューさせていただきました。

Polyaromatic molecular peanuts

K. Yazaki, M. Akita, S. Prusty, D. K. Chand, T. Kikuchi, H. Sato, M. Yoshizawa

Nat. Commun. 2017, 8, 15914. DOI: 10.1038/ncomms15914

筆頭著者の矢崎先生について、吉沢道人先生から次のコメントをいただきました。

一緒に研究すること約6年、こだわりの「かたち」の色々な分子が、矢崎君の手から誕生しました。3年前の分子チューブ(Nature Commun., 2014, 5, 5179)の研究を通じて、少し弱気だった矢崎君は自信も実力も顕著にアップし、全てを任せられる博士学生となりました。その後、インドの灼熱の夏を乗り越えた今回の研究は、矢崎君の手で私の予想を超えるかたちになりました。次は、矢崎研究室からすごい分子が生まれること、楽しみにしています。

それでは、本成果をご覧ください!

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?簡単にご説明ください。

私たちは、配位結合とπ-π相互作用を上手く使い、複雑なピーナッツ型分子の合成に成功しました。

配位子と金属イオンとの配位結合を駆動力とした自己集合は、対称性の高いナノ構造体を合成する手法として、広く用いられています。一方で、植物の花や果実、種子などの複雑な立体構造を模倣することは、まだまだ難しいです。今回、我々は、競合しない2種類の相互作用(配位結合とπ-π相互作用)を上手く利用することで、ダンベル型の殻に2つの種を内包したユニークなコアシェル構造を有する分子ピーナッツの合成に成功しました。

図1 W型配位子と分子ピーナッツの模式図

まず、4つのアントラセン環と3つのピリジン環を含むW型配位子を新規に合成しました。これとPd(Ⅱ)イオンを4:3の比率で混ぜ合わせることで、M3L4組成の分子ダブルカプセル1が定量的に生成しました。その結晶構造に注目すると、8つのアントラセン環に囲まれた約1 nm の球状空間を2つ有することが明らかになりました。

図2 ダブルカプセル1の構造式とそのX線結晶構造解析

次に、C60をコアにした分子ピーナツの構築にトライしてみました。ダブルカプセル1のDMSO溶液にC60を加えると、ダブルカプセル1の中央のPd(Ⅱ)イオンが脱離して、2つのC60を内包したM2L4組成の分子ピーナツ(C60)2@2に構造変換しました。また、高次フラーレンC70および金属内包フラーレン(Sc3N)2@C80を用いても、同形状の分子ピーナッツが得られました。(図3)。

図3 分子ピーナッツの合成とその最適化構造およびそれらの吸収スペクトル

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

私がインド工科大学マドラス校のディリップ先生のところに留学した時に、本研究テーマを共同研究として始めました。

インドはとにかくアツかったです。気温も暑かったのですが、学生の研究に対する姿勢がアツかったです。設備も最新鋭の装置ばかりの研究所で、朝は8時頃から夜12時過ぎても研究室の灯りが点いていました。また彼らは、ガツガツと“自分の売り込み”もしていました。著名な先生に対して、断られることを全く恐れず、自分を売り込みに行きます。そんな突破力のある学生と一緒に研究したことが、印象に残っています。

図4 インド留学時の写真(筆者は最後尾右から二番目)

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究は、ダブルカプセルの合成、その内包能の調査、分子ピーナッツへの構造変換の順に進めました。初めのダブルカプセルの合成までは、すんなりと進んだのですが、その分子内包能の調査では、なかなか面白いことが起こらず苦戦しました。一年近く、様々なゲスト分子と溶媒の条件を設定し、NMRやESI TOF MSを測定し続けました。そのうちに、ダブルカプセルに大きな分子を入れると、もう片方の空間に小さな分子を内包するヘテロ内包ができました(図5)。そこで、より巨大な分子として、フラーレンを入れてみました。そうすると驚くべきことに、ダブルカプセルはPd(II)イオンの脱離を伴ってフラーレンを内包し、分子ピーナッツに構造変換しました。そのデータを机に並べながら、指導教員の吉沢先生とピーナッツの形の議論をしたことが良い思い出です。

図5 ダブルカプセルは2種類の化合物をヘテロに内包することも可能

Q4. 将来は化学とどう関わっていきたいですか?

現在、山梨大学の特任助教という立場で、化学を教えています。

今後は山梨大学の職員として、研究と教育の両方に力を注ぎたいと考えています。また、理系離れが叫ばれている現在ですので、研究室に属していない学部生や中学生、高校生から見ても、面白くて分かりやすい研究をしたいと思います。そして、彼らが化学に関わりたいという夢を抱いてくれると嬉しいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

化学の研究は、ロールプレイングゲーム(RPG)と似ています。頑張った分だけ経験値が貯まり、どんどんハイレベルな成果が出ます。私たちは、ガラスフラスコや試薬を武器にして、常に様々な課題と戦っています。世界中にライバルも居ますし、頼りになる仲間もいます。ゲームと比べて研究のとても良い所は、時間制限がないところです。思う存分、好きなだけ実験して、自分だけのストーリーを、素敵な研究を創り上げてください。

最後に、今回の研究課題でご指導下さいました吉沢先生と穐田先生、X線結晶構造解析でお世話になりました株式会社リガクの菊池さんと佐藤さん、インドでお世話になりましたディリップ先生とサムヤカンタ君に心から感謝申し上げます。

関連リンク

東京工業大学化学生命科学研究所 穐田・吉沢研究室

複雑なピーナッツ型分子の作製に初成功 ー 2種類の化学結合を活用してコアシェル構造を簡便合成 ー(プレスリリース)

研究者の略歴

矢崎 晃平 (やざき こうへい)

所属:山梨大学 工学部 応用化学科 矢崎研究室 特任助教
現在の研究テーマ:高分子と超分子を組み合わせたテーマを立ち上げ中です。
略歴
2011年 3月 東京理科大学 理工学部 工業化学科 卒業 (山下研究室)
2013年 3月 東京工業大学大学院 総合理工学研究科 化学環境学専攻修士課程 修了 (穐田・吉沢研究室)
2016年 3月 東京工業大学大学院 総合理工学研究科 化学環境学専攻博士課程 修了 (穐田・吉沢研究室)
2015年 4月~ 2017年 2月 学振特別研究員(DC2,PD)
2015年 6月~ 2016年 9月 IIT Madras Visiting Researcher
2017年 3月〜 現職

The following two tabs change content below.

Orthogonene

有機合成を専門にするシカゴ大学化学科PhD3年生です。 趣味はスポーツ(器械体操・筋トレ・ランニング)と読書です。 ゆくゆくはアメリカで教授になって活躍するため、日々精進中です。 http://donggroup-sites.uchicago.edu/

関連記事

  1. とある化学者の海外研究生活:イギリス編
  2. フラーレン:発見から30年
  3. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  4. 人と人との「結合」を「活性化」する
  5. ケムステイブニングミキサー2016を終えて
  6. 私がなぜケムステスタッフになったのか?
  7. Actinophyllic Acidの全合成
  8. シクロファン+ペリレンビスイミドで芳香環を認識

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ストラディバリウスの音色の秘密は「ニス」にあらず
  2. 2007年度ノーベル医学・生理学賞決定!
  3. 分子の動きを電子顕微鏡で観察
  4. フロンよりもオゾン層を破壊しているガスがある
  5. ディーター・ゼーバッハ Dieter Seebach
  6. 私がケムステスタッフになったワケ(3)
  7. ペプチドのらせんフォールディングを経る多孔性配位高分子の創製
  8. 単一細胞レベルで集団を解析
  9. ケイ素 Silicon 電子機器発達の立役者。半導体や光ファイバーに利用
  10. 化学合成で「クモの糸」を作り出す

関連商品

注目情報

注目情報

最新記事

トヨタ、世界初「省ネオジム耐熱磁石」開発

トヨタは、今後急速な拡大が予想される電動車に搭載される高出力モーターなど様々なモーターに使用されるネ…

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

化学探偵Mr.キュリー7

昨年3月からついに職業作家となった、化学小説家喜多喜久氏。その代表作である「化学探偵Mr.キュリー」…

Chem-Station Twitter

PAGE TOP