[スポンサーリンク]

一般的な話題

重水は甘い!?

[スポンサーリンク]

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね。放射性同位体なんていうとなんだか同位体はなんだもかんでも危ないような錯覚に陥りますが、一番分かりやすい例として水素の同位体である重水素(2H)は天然にありふれた核種で、地球上では0.015%程度の水素は重水素です。
高校の教科書にも登場しますが、普通の水(1H2O)と重水(2H2O)は化学的性質は基本的に同じです。
そんな重水がなんと甘い!という論文がありましたのでご紹介したいと思います。

皆様大変ご無沙汰いたしておりますペリプラノンでございます(まだ生きてました)。ブランクもありますので軽い記事ですがご了承ください。

重水素は米国のHarold Clayton Ureyによって1931年に6.4 mの馬鹿でかい分光器を用いた分光学的手法によって発見され、後に液体水素を蒸留することでその存在が確認されました。[1] よって、今年は重水素発見90周年にあたりますね。Ureyはこの業績により1934年にノーベル化学賞を受賞しております。

その重水素(deuterium)でできた水が重水(D2O)ですが、水に比べると物理的性質はけっこう差があります。例えば沸点は101.4 °C、融点は3.8 °C、密度にいたっては1.107 g/cm3と10%程度異なっています。pHは7.43を示し、これもまあまあ違いますね。

さて本題ですが、イスラエル、チェコ、ドイツの研究グループの共同研究という形で、Communications Biology誌に重水は甘いという論文が掲載されました。

“Sweet taste of heavy water”

Abu, N. B.; Mason, P. E.; Klein, H.; Dubovski, N.; Shoshan-Galeczki, Y. B.; Malach, E.; Pražienková, V.; Maletínská, L.; Tempra, C.; Chamorro, V. C.; Cvačka, J.; Behrens, M.; Niv, M. Y.; Jungwirth, P.

Commun. Biol. 2024, 440 DOI: 10.1038/s42003-021-01964-y

重水は摂取する水分を25%程度にすると細胞にダメージがあるとされており、40-50%程度の水を重水に置き換えると植物、動物は成育できないとされています。よって、生物を構成する分子が重水素化されると、生体内分子に対して何らかの影響があることは明らかです。数mL程度飲んでも影響はないとされていることから、この論文では実際に被験者に対して重水を味わってもらい、その甘味について調査しています。その結果臭いを感じる状態では、28人中22人が水と重水のアジの違いを認識しました。某格付け番組でも鼻をつまんで味わうと全く味がわからなくなるというのを観たことがあるかもしれませんが、そのようにすると26人中14人しか違いがわからなくなりました。臭いだけでは25人中9人が違いを認識しましたが、これは少々怪しい気もします。

甘さについての9段階評価を用いるパネル試験では、重水の含有量を上げると甘みを感じる度合いが増えるとか、グルコースやスクロース溶液にした場合、重水に溶かしたものの方が甘みを感じる傾向が強まるなどの結果が出ています。一方でうま味や苦みは逆の傾向が出ています。

(図は論文より抜粋)

では、どうして重水は甘いのでしょうか?一つの可能性として、甘味受容体に対して重水が何らかの影響を与えているということが考えられます。

甘味受容体のモデル(図は論文より抜粋)

彼らは甘味受容体TAS1R2/TAS1R3に対して重水がどのように働くかなどを計算しており、水が本来入るべき場所への重水の入り方の違いなどを見積もっています。私個人としては、これで本当に変わるのか?というレベルですが、確かにデータには違いが見られます。また、甘味受容体の阻害物質である、lactisoleを加えて実験を行うと、重水の甘みはほとんど感じられなくなるという結果より、重水がこの甘み受容体に何か作用していることは確かなようです。

Lactisoleの構造

実際に何が起こっているのかを突きとめるのは容易ではないかもしれませんが(私見ですがタンパク質の交換性プロトンが重水素化される影響ってないのか?と思うんです)、重水が甘い!というだけでインパクト十分な論文だなと思いました。

さあここまで書いたら皆さんも重水舐めたくなりましたよね?化学者たるもの私も当然舐めてみましたが・・・まあラーメン食べた後で舌がバカになっていたんでしょう。

 

関連文献

  1. Urey, H. C.; Brickwedde, F. G.; Murphy, G. M. Phys. Rev. 39, 164 (1962). DOI: 10.1103/PhysRev.39.164

 

関連書籍

(↓ネタです)

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. Mestre NovaでNMRを解析してみよう
  2. 【書籍】クロスカップリング反応 基礎と産業応用
  3. 円偏光スピンLEDの創製
  4. クラリベイト・アナリティクスが「引用栄誉賞2017」を発表
  5. カスケード反応で難関天然物をまとめて攻略!
  6. 化学者のためのエレクトロニクス講座~電解銅めっき編~
  7. 研究リーダーがPJを成功に導く秘訣
  8. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 最近の有機化学注目論文3
  2. ヤモリの足のはなし ~吸盤ではない~
  3. なぜ青色LEDがノーベル賞なのか?ー雑記編
  4. ワインのコルク臭の原因は?
  5. 第24回「アルキル-πエンジニアリングによる分子材料創成」中西尚志 博士
  6. 研究室でDIY! ~明るい棚を作ろう~
  7. ヘキサニトロヘキサアザイソウルチタン / Hexanitrohexaazaisowurtzitane (HNIW)
  8. ソモライ教授2008年プリーストリー賞受賞
  9. 低投資で効率的な英語学習~有用な教材は身近にある!
  10. 炭素をつなげる王道反応:アルドール反応 (3)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年4月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP