[スポンサーリンク]

ケムステニュース

海洋生物の接着メカニズムにヒントを得て超強力な水中接着剤を開発

[スポンサーリンク]

一般的な接着剤は、水中で接着強度が大幅に低下してしまいます。この原因の一つは、被着体表面の水和水が接着剤と被着体間の相互作用を阻害するためです。東京大学大学院工学系研究科の江島広貴准教授らのグループは海洋生物の接着機構にヒントを得て、水中でも接着強度10 MPaを超える、超高強度水中接着剤の開発に成功しました。本接着剤は湿潤環境下においても高い接着強度を発揮できるため、手術用接着剤などへの応用が期待されます。 (引用:東京大学工学系研究科プレスリリース)

湿潤環境下でも強い接着強度を示す接着剤についてまとめた論文が発表されましたので詳細を見ていきます。

まず研究の背景ですが、濡れた環境下でも接着できる接着剤は生体医学や海に関する産業において需要がありますが、水和層が接着剤と表面の相互作用を妨害するため、一般的な接着剤は水中では作用しないことが分かっています。一方、ムール貝の足糸のタンパク質は、水和層に浸透できるため濡れた表面にでもくっつくことができます。この接着性のタンパク質には、3,4-dihydroxyphenylalanine (DOPA)のようなカテコール骨格を持つアミノ酸が含まれており、この構造を組み込んだポリマーの研究が進められてきました。しかしながら、カテコールの接着力は、乾燥の接着剤よりも大幅に弱いのが現状となっています。

カテコール骨格

カテコールよりヒドロキシ基が一つ多いピロガロールは、植物が自然に作り出す化学種ですが、最近になって水中と医療用接着剤として注目を浴びており、本論文の研究グループもガロール骨格を持つポリマーの接着剤はカテコール骨格の接着剤よりも水中で強い接着強度を持つことを示しています。これらの構造の延長線上にある4つか5つのヒドロキシ基を持つ非カノニカルなフェノールは、より強い接着力を持つことが予想されますが、天然には存在せず、合成例もありませんでした。そこで本研究では、ヒドロキシ基の数や位置が異なる13のフェノールをポリスチレン主鎖に組み込み接着強度を評価しました。

ピロガロール骨格

まず合成方法ですが、いずれのポリマーも最初に非カノニカルなメトキシモノマーを合成し、AIBNによってポリマー化し、最後に三臭化ホウ素によってヒドロキシ基に変換しました。評価として最初にP(4HS-co-S):4 HydroxylsとP(5HS-co-S):5 Hydroxylsの分子量と接着強度の関係性を調べました。具体的には種々の分子量を持つポリマーを合成し水中で金属の棒に塗り、他の金属の棒を貼り合わせ接着力を測定しました。結果、20から40kDaでどちらのポリマーも接着強度が向上しましたが、それ以上大きな分子量では大幅な向上は見られませんでした。これは、分子量が20から40 kDaの時に分子の絡み合いが関係していると推測されています。接着時間に関してP(5HS-co-S)はわずか10秒の時間で1.4MPaの接着を発し、2分で 10 Kgの重りを吊り下げに耐えられるようになりました。そしてこの接着力は一か月以上保つことが分かり、長期間でも接着力を保つことが示されました。

a:天然由来の接着剤の構造と本研究で調べた接着剤の構造 b:分子量による強度の違い c:構造と今日の関係 d:接合後の待ち時間ち強度の違い (出典:原著論文)

さらに構造依存性を解明するために、ヒドロキシ基の数だけを変えたポリマーを合成し接着強度を比べました。結果ヒドロキシ基が4つまではリニアに接着強度の向上が見られ、水晶振動子マイクロバランスでも種々の基板材料で同様の傾向が見られました。ヒドロキシ基のホモポリマーを合成し同様の評価を行ってもP4HSとP5HSが強い接着強度を示したことから、非カノニカルなフェノール部位が接着には重要であることが確認されました。

a:フェノールの構造と強度の関係 b:様々な材質ごとのフェノールの構造と吸着量の関係 (出典:原著論文)

さらにヒドロキシ基の位置を変えたポリマーで評価を行い、構造の関係性を調べ下のような傾向が得られました。

ヒドロキシ基の数と位置と接着強度の関係 (出典:原著論文)

  1. ヒドロキシ基の数が第一に接着力を左右する。
  2. 水中の接着においては、カテコール骨格である必要はなく 3,5-2HSの方が少しだけ強い接着力を示した。
  3. オルト位のヒドロキシ基は、強い接着力には有効でないとみられる。これは、この位置のヒドロキシ基の相互作用がポリマー主鎖によって妨げられているからかもしれない。
  4. P4HSとP5HSで接着力がほとんど変わらないのは3の影響かもしれない
  5. ポリマー主鎖の隣で隣接した2つのヒドロキシ基によって立体障害が大きく、2,3,5,6-4HSが4HSの中で最も弱い接着力を示した。

次にフェノールとスチレンの割合を変えて水の取り込みを調べました。先行研究では、P(2HS25%-co-S75%)の割合 が最も強力な接着強度を水中で示しています。そこで本研究ではヒドロキシ基数で同等のP(2HS26%-co-S74%) とP(5HS11%-co-S89%)を合成し比べました。QCMチップへの水の吸着量を調べたところ P(2HS26%-co-S74%)の方が5倍ほどP(5HS11%-co-S89%)よりも水を吸収していることが分かりました。それぞれの接触角を調べたところ、P(5HS11%-co-S89%)の方が撥水性が高く、水中での気泡の接触はどちらも同じであることが分かりました。これはP(5HS11%-co-S89%)の方がスチレンが多いもののヒドロキシ基の数は同じ事に起因し、そしてこの高いスチレンの割合がポリマーに水を寄せ付けないことを補助しているとコメントされています。

a:ポリマーごとの接合時間と水の吸着量の違い b:空気中の水滴と水中の気泡の形態 c: SEM画像 (出典:原著論文)

SEMなどの結果も踏まえてP(2HS26%-co-S74%) とP(5HS11%-co-S89%)の振る舞いを比較しました。ムール貝のタンパク質の場合、疎水性の部位がカテコール基と共にクラスターを形成し空間的に閉じ込められます。非カノニカルなフェノールは、空間的に閉じ込められた2,3つのカテコール基と同じであり、疎水性の微小環境を形成します。この空間的な閉じ込めを人工的に作り出すことは難しく、そのため2HSや3HSで接着強度が低下する合理的な理由となっています。過剰量のフェノール骨格では、表面のフェノール骨格のバランスが崩れるだけでなくポリマー鎖の溶解性が変わり親水性の微小環境が形成されてしまうため接着性と凝集性の相互作用が低下につながってしまいます。このような経緯でP(5HS11%-co-S89%)の方が強い接着強度を持つことが分かりました。

d:二つのポリマーの水の取り込み方と接合時の構造の違い e:アルミニウムに接着7日後のXPS、OHの酸化により形成するC=Oが低濃度であることが分かる。(出典:原著論文)

P(4HS-co-S) と P(5HS-co-S)の系では凝集破壊が常に起きています。一方、P(3HS-co-S) とP(2HS-co-S)の系では、分子量が大きい時のみ起きており、P(4HS-co-S) と P(5HS-co-S)は表面への親和性が高いことが分かっています。また過去の研究では、オルト位のヒドロキシ基は最小限で接着に寄与することが示されています。このような背景からポリマー主鎖と非カノニカルなフェノールの間に空間を作り凝集性の相互作用を強くするような改良をモノマーに施しました。結果、接着強度は向上し報告されている水中の結果としては最も高い値が得られました。様々な材質で接着強度を調べましたが、どの系でも先行研究よりも優れていることが分かり、よってこの系でもキレートや静電相互作用、水素結合、疎水相互作用といった様々な相互作用が表面に対して働くことができることが判明しました。

a:改良前後の接着強度の違い b:様々な材質への接着強度 c: 市販の接着剤との比較 (出典:原著論文)

まとめとして、本研究では4か5つのヒドロキシ基を持つ非カノニカルなフェノールポリマーを合成し、ヒドロキシ基の数と位置を変えて接着強度を測定することで水中で強力な接着強度を示すメカニズムが解明されました。非共有性の結合と酸化安定性により再利用可能性も示され、また接着のメカニズムについても生体模倣の系とは異なることが示されました。今後の課題として、ポリマーの分子量と分子量分散度をコントロールすることが挙げられ、また有機溶媒を使わない接着剤の開発も生体医学への応用を考えて大きな研究関心だとしています。

水中など湿潤条件でも接着力を示すポリマーの発見ということで、実用化されれば外科手術に大きな変革をもたらすかもしれません。また、医療分野以外にも海や川での工事、水中生物や植物の調査など、期待される応用は数知れません。このような実用化のためには論文の結論で述べられている通り生体や環境に対して問題が無い溶媒が必要で、このポリマーの実用化に期待します。

関連書籍

[amazonjs asin=”4526081884″ locale=”JP” title=”ユーザー目線で役立つ 接着の材料選定と構造・プロセス設計”] [amazonjs asin=”490700284X” locale=”JP” title=”接着・接合の支配要因と最適化技術”]

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 植物性油の再加熱によって毒物が発生
  2. 子ども向け化学啓発サイト「うちラボ」オープン!
  3. 昭和電工、青色LEDに参入
  4. 大塚製薬4200億円で米バイオベンチャーを買収
  5. 陰イオン認識化学センサーの静水圧制御に成功~高選択的な分子検出法…
  6. 松本和子氏がIUPACのVice Presidentに選出される…
  7. 食品安全、環境などの分析で中国機関と共同研究 堀場製
  8. 1回の実験で高活性な金属ナノ粒子触媒

注目情報

ピックアップ記事

  1. 2017年始めに100年前を振り返ってみた
  2. ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング
  3. Xantphos
  4. “匂いのゴジラ”の無効化
  5. MSH試薬 MSH reagent
  6. 学会に行こう!高校生も研究発表できます
  7. トムソン:2007年ノーベル賞の有力候補者を発表
  8. UC Berkeley と Baker Hughes が提携して脱炭素材料研究所を設立
  9. ヘテロベンザイン
  10. 研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP