[スポンサーリンク]

スポットライトリサーチ

湿度変化で発電する

[スポンサーリンク]

第324回のスポットライトリサーチは、国立研究開発法人産業技術総合研究所 人間拡張研究センター(スマートセンシング研究チーム・駒﨑 友亮さんにお願いしました。

ジメジメと雨が降る日々が続き、何をするにも嫌な気分になってしまいがちですね。なんと!今回はそんな身近な「湿度」の変化を使って発電できちゃうよ、という研究成果が産総研の研究チームから論文発表されています。Sustainable Energy Fuels誌 原著論文およびFront Coverプレスリリースに公開されています。産総研公式 YouTubeチャンネルでも本研究成果は紹介されているようです。

“Energy harvesting by ambient humidity variation with continuous milliampere current output and energy storage”
Sustainable Energy Fuels 2021, 5, 3570. DOI: 10.1039/D1SE00562F

それでは今回もインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

環境中の湿度変化を利用して発電する電池を開発しました。原理としては、潮解性のある塩化リチウムの吸湿平衡と濃淡電池(逆電気透析)を組み合わせています。塩化リチウム水溶液の濃度と相対湿度の間には平衡関係があり、湿度が低ければ水分が蒸発して塩化リチウム水溶液は濃く、湿度が高ければ吸湿して薄くなります。つまり、この性質を使うと湿度の変化を水溶液の濃度変化に変換することができるわけです。塩化リチウム水溶液で濃淡電池を作製し、片方の部屋を空気に開放してもう片方の部屋を密閉しておけば、空気に開放された部屋の濃度のみが湿度に応じて変わりますから、2つの部屋の間に濃度差が生じて電気を取り出すことができます。

今回の研究では、実際にこの電池を試作し、湿度変化を用いて発電ができることを実証しました。得られる電力は微弱ですが、エネルギーハーベスティングの新手法としてIoTセンサなどの電源への応用が期待できます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究で一番思い入れのあるところは、根本となる原理を思いついたことです。私は元々潮解性を利用した湿度センサの研究をしていたのですが、たまたま逆電気透析の仕組みを知って、この2つを組み合わせれば湿度を使って発電ができるのではないかと気付いたときにはワクワクしました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

塩化リチウム水溶液の濃度が湿度変化に十分に追従するようにするためには、水溶液の量を極力減らす必要があるのですが、そうすると電極を水溶液にしっかりと浸すことができなくなります。この両立が難しかったですね。最終的には水溶液をよく吸うろ紙の上に銀ペーストを使って電極を印刷することで解決しました。

Q4. 将来は化学とどう関わっていきたいですか?

こんな研究をしていながらお恥ずかしい話ですが、化学は専門ではなく、この研究を始めてから電気化学を必死で勉強しています。どちらかと言うと苦手意識がありますので、これからも勉強を続けて知識を深めていきたいと思っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んでいただいた読者の皆様、ありがとうございます。湿度変動電池はまだまだ生まれたばかりの技術ですので、よりパワーアップを目指して研究を続けていきたいと思っています。

この研究成果はNEDO「エネルギー・環境新技術先導プログラム/未踏チャレンジ2050」の委託業務の結果得られたものです。この場を借りて関係される方々に深く御礼申し上げます。

研究成果に関する動画

研究者の略歴

名前:駒﨑 友亮
所属:国立研究開発法人産業技術総合研究所 人間拡張研究センター スマートセンシング研究チーム
研究テーマ:湿度変動電池の開発、布状湿度センサの開発

ふぉとん

ふぉとん

投稿者の記事一覧

博士(工学)。大学教員。発光物質が大好物。いつも分子になった気持ち(思ひ)で分子を設計しています。

関連記事

  1. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  2. アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-…
  3. イミデートラジカルを用いた多置換アミノアルコール合成
  4. アルコールを空気で酸化する!
  5. 元素紀行
  6. 第二回ケムステVシンポ「光化学へようこそ!」開催報告
  7. アメリカ大学院留学:卒業後の進路とインダストリー就活(2)
  8. アンモニアを室温以下で分解できる触媒について

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2009年イグノーベル賞決定!
  2. フィッシャー オキサゾール合成 Fischer Oxazole Synthesis
  3. もっと化学に光を! 今さらですが今年は光のアニバーサリーイヤー
  4. 海の生き物からの贈り物
  5. 長谷川 美貴 Miki Hasegawa
  6. ジャンフェン・カイ Jianfeng Cai
  7. クロロ[(1,3-ジメシチルイミダゾール-2-イリデン)(N,N-ジメチルベンジルアミン)パラジウム(II)]:Chloro[(1,3-dimesitylimidazol-2-ylidene)(N,N-dimethylbenzylamine)palladium(II)]
  8. ウィリアム・リプスコム William N. Lipscomb Jr.
  9. デニス・ホール Dennis G. Hall
  10. “かぼちゃ分子”内で分子内Diels–Alder反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年7月
« 6月   8月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

うっかりドーピングの化学 -禁止薬物と該当医薬品-

「うっかりドーピング」という言葉をご存知でしょうか。禁止薬物に該当する成分を含む風邪…

第五回ケムステVプレミアレクチャー「キラルブレンステッド酸触媒の開発と新展開」

新型コロナ感染者数は大変なことになっていますが、無観客東京オリンピック盛り上がっ…

がん治療用の放射性物質、国内で10年ぶり製造へ…輸入頼みから脱却

政府は、がんの治療や臓器の検査をする医療用の放射性物質の国内製造を近く再開する。およそ10年ぶりとな…

三洋化成の新分野への挑戦

三洋化成と長瀬産業は、AI 技術を応用した人工嗅覚で匂いを識別する「匂いセンサー」について共同で事業…

ケムステSlack、開設二周年!

Chem-Stationが立ち上げた化学系オープンコミュニティ、ケムステSlackを開設して早くも二…

過酸がC–H結合を切ってメチル基を提供する

光増感剤とニッケル触媒を用いたC(sp3)–Hメチル化が開発された。合成終盤でのメチル化に威力を発揮…

化学の祭典!国際化学オリンピック ”53rd IChO 2021 Japan” 開幕!

2021年7月「オリンピック/パラリンピック 東京2020大会」も無観客ではあるものの無事開幕されま…

O-脱メチル化・脱アルキル化剤 基礎編

メトキシ基→ヒドロキシ基への変換、割と苦戦しますよね。保護基と呼ぶには利便性が数歩足…

マイクロ波化学のカーボンニュートラルや循環型社会におけるアプリケーションや事業状況

当社のマイクロ波プラットフォーム技術および工業化知見を活用し、アクリル樹脂の分解に必要なエネルギーを…

NMRデータ処理にもサブスクの波? 新たなNMRデータ処理ソフトウェアが登場

NMRメーカーである日本電子のイギリス法人、JEOL UKが6月、WindowsとmacOSの両方で…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP