[スポンサーリンク]

化学者のつぶやき

EDTA:分子か,双性イオンか

[スポンサーリンク]

EDTAの化学構造には,非イオン化分子であるテトラカルボン酸とカルボン酸アンモニウム双性イオンの2つの表記がある。それぞれの表記の裏付けをするために論文を精査したところ、EDTAは双性イオンとして存在する可能性が高いことが提案された。

EDTAの2つの表記

エチレンジアミン四酢酸(EDTA)は,化学教育の場面においてキレート滴定法などの分析実験に用いられることでよく知られている。さらに最近では,生化学や分子生物学の分野でも欠くことのできない試薬となっている。

分析化学のテキストや論文でEDTAの化学構造として表記されるものには,大きく次の二通りがある。

よく見かけるのは,左の非イオン化分子の表記の方だが、右に示すような双性イオンとしての表記もある。どちらがより適切なのだろうか?

この疑問を受け, EDTAの化学構造に関する論文を徹底的に文献調査した結果が「技術・教育研究論文誌」に報告された。

”EDTAの化学構造表記にみられる混乱―分子か双性イオンか”
野口 大介 技術・教育研究論文誌 2021, 28, 27–36. 機関リポジトリのページ

論文の概要

まず,EDTA(H4Y)の酸解離指数pKa値がH4YでpKa1 = 1.99,H3YでpKa2 = 2.67,H2Y2–でpKa3 = 6.16,HY3–でpKa4 = 10.23であること[1]から,各中和反応において水溶液中の溶存化学種がカルボン酸(-COOH)か,それともアンモニウム(=NH+)かを考察した。

EDTAがテトラカルボン酸の非イオン化分子として水溶液中に存在するとしよう。マレイン酸や酢酸のpKaはそれぞれ1.92および4.76で,およそ2 ~5であることから,EDTAのpKa3とpKa4の値(6.16と10.23)はカルボン酸にしては不自然なほどに大きい

今度は,EDTAが非イオン化分子でなく,双性イオンであるとしよう。EDTAのpKa3とpKa4が,第3級アンモニウム基の電離となる。第3級アンモニウム基のpKaは,キヌクリジンや1-エチルピペリジンでは10.71および10.55で,一般におよそ10~11である。EDTAのpKa4は10.23で妥当であるが,pKa3は6.16であるため,pKa3は第三級アンモニウム基にしては小さ過ぎる。分子内水素結合が形成されていると,pKaの値はそうでない場合に比べて変化することから,この場合,おそらく何らかの分子内水素結合を形成しているだろう。

このように,EDTAを非イオン化分子としてよりも双性イオンとして説明する方が, pKa値を,より矛盾がなく説明することが可能である。

次に,EDTAの固体および水溶液のIR測定が行われた研究論文を確認した[2]。カルボキシ基(–COOH)とカルボン酸基(–COO)の吸収波数はそれぞれ異なると予想されたことから,IRスペクトル測定でカルボニル基の吸収が1本しか検出されなければ,EDTAはテトラカルボン酸であり,2本検出されれば–COOHと–COOを有する双性イオンで存在することになる,という考えが当初は支配的だった。そして実際に,カルボニル基の吸収は1本しか検出されなかったのである。

しかしながら,–COOHおよび–COOの間で対称的な水素結合が形成されているとすれば,カルボニル基の吸収が例え1本しか検出されなくとも–COOHおよび–COOの両方が存在するという考えが提案されるに至り,水溶液中に加え固体中においても,EDTAは双性イオンとして存在すると実証されたのである。

IR測定に関する報告に前後して,X線を利用した分析も報告された。例えば,X線結晶構造解析(粉末解析も含む)によると,結晶中においてEDTAは,2つのアンモニウム基とカルボン酸基(カルボキシ基)が二股状の分子内水素結合を形成していることが明らかとされた[3]

X線結晶構造解析による,双性イオンとして存在するEDTA(出典:文献[3c]より改変)

その一方で,同じく固体をX線にて分析するX 線光電子分析(XPS)も報告された。IR測定ではカルボニル基の吸収に多く注目されていたが,N-H(重水素化の場合はN-D)については,強度が弱いことと,水溶液中の測定では水のO-H(重水のO-D)と重なってしまうことから,注目されてこなかった。XPSでは,光電子のエネルギーが測定され,窒素原子に由来する光電子には,エネルギー的に異なる2種類が存在することが明らかとなり,EDTAの固体においては,双性イオンとしてだけでなく,部分的には非イオン化分子としても存在しうることが推測された[4]

EDTAの化学構造の表記があいまいだった理由

以上,EDTAの化学構造を巡って問題とされたことで,先行研究論文から読み取れたことを,簡単にまとめておこう。

(1) EDTA自体は水に難溶であり,水溶液のIR測定が非常に困難であった。
(2) 分子内あるいは分子間水素結合がIR活性な結合の吸収波数を変化させてしまった。
(3) 固体中の測定か,それとも水溶液中の測定なのかがはっきりとは区別されずに,化学構造が議論されてしまった。
(4) EDTAには異なるIRスペクトルを示す2つの異なる結晶変態があるが,これはほとんど知られることがなかった。
(5) 研究報告が同時期に集中し,互いに十分に参照されなかった。

これを機に,よく知られたEDTAというキレート試薬の化学構造表記に存在する課題が広く認識され,化学を学ぶ学生や指導者,および関係の技術者らに,正しい理解を促すきっかけとなることが望まれる。

関連リンク

参考文献

  1. 花木 昭 金属キレートの溶液化学. 保健物理 1978, 13, 137–145. DOI: https://doi.org/10.5453/jhps.13.137
  2. (a) Busch, D. H.; Bailar, J. C., Jr. The stereochemistry of complex inorganic compounds. XVII. The stereochemistry of hexadentate ethylenediaminetetraacetic acid complexes. J. Am. Chem. Soc. 1953, 75, 4574–4575. DOI: https://doi.org/10.1021/ja01114a054 (b) Chapman, D. The infrared spectra of ethylenediaminetetra-acetic acid and its di- and tetra-sodium salts. J. Chem. Soc. 1955, 1766–1769. DOI: https://doi.org/10.1039/JR9550001766 (c) Nakamoto, K.; Morimoto, Y.; Martell, A. E. Infrared spectra of aqueous Solutions. III. Ethylenediaminetetraacetic acid, N-hydroxyethylethylenediaminetriacetic acid and diethylenetriaminepentaacetic acid. J. Am. Chem. Soc. 1963, 85, 309–313. DOI: https://doi.org/10.1021/ja00886a014 (d) Sawyer, D. T.; Tackett, J. E. Properties and infrared spectra of ethylenediaminetetraacetic acid complexes. IV. Structure of the ligand in solution. J. Am. Chem. Soc. 1963, 85, 314–316. DOI: https://doi.org/10.1021/ja01540a022 (e) Langer, H. G. Infrared spectra of ethylenediaminetetraacetic acid (EDTA). Inorg. Chem. 1963, 2, 1080–1081. DOI: https://doi.org/10.1021/ic50009a057 (f) Chapman, D.; Lloyd, D. R. Prince, R. H. An infrared and nuclear magnetic resonance study of the nature of ethylenediaminetetra-acetic acid and some related substances in solution: hydrogen bonding in α-amino-polycarboxylic acid systems. J. Chem. Soc. 1963, 3645–3658. DOI: https://doi.org/10.1039/JR9630003645 (g) Martynenko, L. I.; Pechurova, N. I.; Grigor’ev, A. I.; Spitsyn, V. I. Infrared spectroscopy investigation of the structure of ethylenediamine-tetraacetic acid and its salts. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1970,19, 1172–1177. DOI: https://doi.org/10.1007/BF00852653
  3. (a) LeBlanc, R. B.; Spell, H. L. The two crystal forms of (ethylene-dinitrilo)-tetraacetic acid. J. Phys. Chem. Vol.64, No.7, p.949 (1960). DOI: https://doi.org/10.1021/j100836a513 (b) Cotrait, M. La structure cristalline de l’acide éthylènediamine tétra-acétique, EDTA. Acta Cryst. 1972, B28, pp.781–785. DOI: https://doi.org/10.1107/S056774087200319X (c) Ladd, M. F. C.; Povey, D. C. Crystallographic and spectroscopic studies on ethylenediaminetetraacetic acid (edta) I. Crystal and molecular structure of β-edta. J. Cryst. Mol. Struct. 1973, 3,15–23. DOI: https://doi.org/10.1007/BF01636045
  4. Yoshida, T.; Sawada, S. X-ray photoelectron spectroscopy of EDTA. Bull. Chem. Soc. Jpn. 1974, 47, 50–53. DOI: https://doi.org/10.1246/bcsj.47.50

関連書籍

[amazonjs asin=”4807908707″ locale=”JP” title=”スクーグ分析化学”] [amazonjs asin=”4807904817″ locale=”JP” title=”分析化学実験”] [amazonjs asin=”4759814655″ locale=”JP” title=”分析化学の基礎―定量的アプローチ”]

関連記事

  1. 有機合成化学協会誌2023年4月号:ビニルボロン酸・動的キラル高…
  2. 超原子結晶!TCNE!インターカレーション!!!
  3. 環拡大で八員環をバッチリ攻略! pleuromutilinの全合…
  4. 「オープンソース・ラボウェア」が変える科学の未来
  5. 全フッ素化カーボンナノリングの合成
  6. 有機反応を俯瞰する ーリンの化学 その 1 (Wittig 型シ…
  7. 有機合成にさようなら!“混ぜるだけ”蛍光プローブ3秒間クッキング…
  8. 聖なる牛の尿から金を発見!(?)

注目情報

ピックアップ記事

  1. 最新有機合成法: 設計と戦略
  2. 炭素をつなげる王道反応:アルドール反応 (3)
  3. 酵素の動作原理を手本として細孔形状が自在に変形する多孔質結晶の開発
  4. ケイ素半導体加工に使えるイガイな接着剤
  5. 後発医薬品、相次ぎ発売・特許切れ好機に
  6. 生体深部イメージングに有効な近赤外発光分子の開発
  7. 硫黄化合物で新めっき 岩手大工学部
  8. チャップマン転位 Chapman Rearrangement
  9. SHIPS uniform worksとのコラボ!話題の白衣「WHITECOAT」を試してみた
  10. Reaxys PhD Prize 2020募集中!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

第54回複素環化学討論会 @ 東京大学

開催概要第54回複素環化学討論会日時:2025年10月9日(木)~10月11日(土)会場…

クソニンジンのはなし ~草餅の邪魔者~

Tshozoです。昔住んでいた社宅近くの空き地の斜面に結構な数の野草があって、中でもヨモギは春に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP