[スポンサーリンク]

スポットライトリサーチ

世界最小!? 単糖誘導体から還元反応によって溶ける超分子ヒドロゲルを開発

[スポンサーリンク]

第338回のスポットライトリサーチは、東 小百合 博士にお願いしました。

ヒドロゲルはいわゆる生体材料(バイオマテリアル)への応用可能性から注目を集める素材ですが、外部刺激に応じて材料特性を変えるような設計も、スマートマテリアル開発の文脈下に盛んに検討されています。今回の成果はアミノ単糖誘導体がごく小さな分子がヒドロゲルを形成し、還元刺激に応答して挙動をスイッチさせるという素材特性が見いだされています。東さんは岐阜大学工学部・池田研究室在籍時に本研究を成し遂げ、JACS Au誌 原著論文・プレスリリースに見事掲載されています。

“Development of an Amino Sugar-Based Supramolecular Hydrogelator with Reduction Responsiveness”
Higashi, S. L.; Ikeda, M. JACS Au 2021, doi:10.1021/jacsau.1c00270

研究室を主宰されている池田将 教授から、以下のとおり人物評を頂いています。現在はドイツのミュンスター大学(Seraphine V. Wegner研)にて博士研究員として研鑽を積まれており、国際経験を経ることで今後ともますますの飛躍が期待されます。それでは今回もインタビューをお楽しみください!

東さんはどこにエネルギーが入っているのかなと思うぐらい活動的で明るく、研究が好きなことが学会などで出会った人にすぐ伝わってしまうみたいです。今は、コロナ禍で遅れていたドイツ留学の念願が叶って、毎日楽しみながら、がんばっていると思います。時折隠しきれない負けず嫌いなところも持ち合わせているので、今後どんな研究者に成長していくのか楽しみです。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

アミノ糖から特定の化学刺激に応答する人工分子パーツを組み込んだアミノ糖誘導体をワンステップで合成し、世界最小クラスのゲル化剤となることを発見しました。
アミノ糖は、一般に2位の水酸基がアミノ基に置換された糖のことであり、本研究では自然界にも豊富に存在するグルコサミン (GlcN) とガラクトサミン (GalN) に着目しました。本研究の導入として、池田研究室 (池田先生が浜地研究室-助教、北出研究室-准教授のスタッフ時代から) では、人工分子パーツを生体分子に組み込む分子設計戦略で、自己集合性「ペプチド」の分子集合状態や「核酸」の高次構造を、特定の化学刺激 (酸化、還元など) で制御することに成功しています。そして、次に標的としたのが「糖」であり、中でも自己集合性が最も弱いとされる「単糖」の超分子構造体の構築とその構築制御を目指しました。そこで、池田研究室の花形選手であるアミノ基の保護基: NPmoc基 (p-nitrobenzyloxycarbonyl) を冒頭で触れたアミノ糖のアミノ基に修飾してみました (図1-A)。そうして合成した2種類のアミノ糖誘導体 (GlcN-NPmoc, GalN-NPmoc) をそれぞれ水溶液に懸濁し、加熱-冷却後に顕微鏡 (TEM, CLSM) での観察を行いました。その結果、GlcN-NPmocは直径数10 nmのナノファイバー、GalN-NPmocは直径数µmのマイクロスフェアへと自発的に組み上がることを見出しました (図1-B)。特に、GlcN-NPmocによるナノファイバー構築は、一定濃度以上で巨視的に流動性の低いヒドロゲルを形成します。さらに、GlcN-NPmocヒドロゲルは還元反応 (還元剤: Na2S2O4) により完全に溶けることも確認されました (図1-C)。還元反応は、生体内の中でも腫瘍組織周辺で見られる低酸素環境下で促進することが知られており、DDSや創薬分野で重要な標的の1つです。本研究で開発したGlcN-NPmocヒドロゲルはそうした特定の生体内環境に応答して薬剤を放出する新規の薬剤放出キャリアとしての応用が期待できます。

また、開発したアミノ糖誘導体の1位はフリーで還元末端のままであるため、アルデヒド基との反応性の高いヒドラジノ基およびアルキルアミノ基を有する機能性分子の修飾も可能と考えられます。実際に本研究の中でも、ヒドラジノ基を有する蛍光標識試薬 (NBD-H, 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine) 溶液をGlcN-NPmocナノファイバーおよびGalN-NPmocマイクロスフェア溶液に滴下するだけでそれぞれの構造体の蛍光標識が確認されました (図2)。このことから、開発したアミノ糖誘導体は他の機能性分子によるさらなる機能性の高度化も期待できます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

この研究テーマはメインで取り組んでいた研究の学位審査間近に突如として池田先生に持ちかけられ始めたのですが、学生生活最後に遂行したということで思い入れは深いです。そして始めてみると、アミノ糖誘導体の合成開始から30分以内に「当たった!」と思いました。それは、GlcNとGalNでNPmoc化試薬の滴下直後の反応溶液の様子が大きく異なり、GlcNの反応溶液はすぐに全体がゲル化して攪拌子が回転しなくなったのです。私はその光景を見た瞬間から、先に待ちうけるデータ収穫祭の毎日を想像しワクワクが止まりませんでした。その後は、卒業まで時間も無かったのでワクワクな気持ちを隠し、周囲には険しい表情を見せながら黙々と早く丁寧にデータを集めることに注力しました。険しい表情に、後輩から「怒ってますか?」とよく聞かれたことが印象的です。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

実験に関しては、GlcN-NPmocのゲル状態を試料としたIRやCD測定において、測定用セルへのゲルサンプルの導入操作がデータの差異につながり、再現性のあるデータ取得にやや時間がかかりました。また、GlcNとGalNは4位水酸基の配置が異なる、すなわちエピマーの関係にある、だけでその誘導体の自己集合構造に明瞭な違いが生じたのかについては論文投稿時も未解明のままでした。この点に関して査読者に深い考察を促され、過去の論文に知見を求め、N-アセチル-α-D-グルコサミン (α-D-GlcNAc) とN-アセチル-α-D-ガラクトサミン (α-D-GalNAc) の単結晶構造を比較することで、本研究で見られたGlcN-NPmocとGalN-NPmocの自己集合挙動の違いを考察しました (図3)。具体的には、単結晶構造からα-D-GlcNAcの自己集合には2位のアミド基同士の水素結合が見られ、そのことがα-D-GlcNAc の1次元的な集合を安定化しており、GlcN-NPmocの自己集合にもニトロフェニル基同士のπ-πスタッキングに加えて2位のアミド基同士の水素結合が加わることが考えられます。一方で、α-D-GalNAcの自己集合には2位のアミド基同士の水素結合は見られず、代わりに4位水酸基と隣接分子の3位水酸基との間に水素結合が見られました。このような水素結合形成様式の違いがGlcN-NPmocとGalN-NPmocのナノファイバー形性能に影響を与えていると考えられます。

Q4. 将来は化学とどう関わっていきたいですか?

私は、実験だけでなく日常生活に転がる化学に疑問を持ち、身近な人とあれこれと一緒に考えることに楽しさを覚えています。実験は、いつも思い通りに進むということは決してなく、研究生活に疲れを感じる時もありますが、化学に携わる研究者として化学の面白さを一人でも多くの人に知ってもらえるよう努めたいと思います。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究で開発したアミノ糖誘導体は多彩な機能を持つ糖をベースとし、なおかつ化学構造からもさらなる機能の拡張が容易であることが予想されます。学生生活最後にそんな魅力的な分子の開発に携わることができたこと、さらにはChem-Stationで取り上げていただけたことを大変嬉しく思っております。
数ヶ月前から合成生物学を専門とするドイツ ミュンスター大学の研究室でポスドクを始めました。海外でポスドクをする日が訪れるとは博士課程進学時は全く想像していませんでした。研究の世界には、人それぞれ様々な選択肢 (企業 or アカデミック、国内or海外、どの研究分野で、どの先生のもとで 等) があることに私は魅力を感じています。そんな私は研究の話ももちろんですが、その研究の背景にある研究者自身の経験談も聞くことが好きです。学会で出会った際はぜひ、そのような話もできたらなと思います。私は近い将来、これからドイツで学ぶことも活かして『自分らしい研究』を新たにスタートさせたいと夢見ています。
最後に、本研究遂行だけでなく博士号取得まで本当に温かいご指導を続けてくださった池田先生、池田研究室のスタッフの皆様、ご助言頂いた先生方、苦楽を共にしてくれた研究室のメンバーにこの場を借りて心から感謝を申し上げます。

研究者の略歴

東 小百合 (ひがし さゆり)
研究テーマ: 生体分子を利用したナノバイオ材料の創製に関する研究
所属: 岐阜大学大学院 連合創薬医療情報研究科 池田研究室 特別協力研究員
兼 University of Münster, Germany (Prof. Seraphine V. Wegner) 博士研究員

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学…
  2. カルボン酸を触媒のみでアルコールに還元
  3. “防護服の知恵.com”を運営するアゼアス(株)と記事の利用許諾…
  4. 有機合成で発生する熱量はどのくらい?EasyMax HFCal
  5. ポリエチレンテレフタレートの常温解重合法を開発
  6. 不安定な合成中間体がみえる?
  7. 事故を未然に防ごう~確認しておきたい心構えと対策~
  8. 反応経路最適化ソフトウェアが新しくなった 「Reaction p…

注目情報

ピックアップ記事

  1. キムワイプをつくった会社 ~キンバリー・クラーク社について~
  2. セメントから超電導物質 絶縁体のはずなのに
  3. コンラッド・リンパック キノリン合成 Conrad-Limpach Quinoline Synthesis
  4. ポンコツ博士の海外奮闘録⑬ ~博士,コロナにかかる~
  5. 第168回―「化学結晶学から化学結合を理解する」Guru Row教授
  6. グァンビン・ドン Guangbin Dong
  7. 消せるボールペンのひみつ ~30年の苦闘~
  8. 2016年1月の注目化学書籍
  9. アメリカ化学留学 ”大まかな流れ 編”
  10. 【ナード研究所】新卒採用情報(2025年卒)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第XX回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP