[スポンサーリンク]

スポットライトリサーチ

金触媒で変身できるEpoc保護基の開発

[スポンサーリンク]

 

第334回のスポットライトリサーチは、理化学研究所 開拓研究本部 田中生体機能合成化学研究室 基礎科学特別研究員の 山本 智也 さんにお願いしました。

保護基は有機合成における必要悪であると知人の先生が仰っていました。複雑な化合物の合成と保護基の活用は切っても切れない間柄 (いや、切ったら切れてほしい) ですが、切れなくていい時に切れてしまうのが厄介なところですね。山本さんらの研究グループは、特定の条件で構造が変化し、その前後で反応性の変わる (勝手に切れない) ユニークな Epoc 保護基を開発して、Chemical Science 誌に発表しました。

Tomoya Yamamoto, Tsung-che Chang, and Katsunori Tanaka, “Epoc group: transformable protecting group with gold(III)-catalyzed fluorene formation”, Chemical Science, Advance Article, DOI: 10.1039/D1SC03125B.

研究を指揮された主任研究員の 田中 克典 先生から、山本さんについてのコメントを頂いております。

山本君は NMR のエクスパートですが、有機合成 (しかもちょっと変わった有機合成) も行いたいと希望して、私の研究室に参りました。参画して 2 年近くになりますが、当初予定していた生体内での金属触媒反応がうまくいかず、長い間低空飛行しました。そんな時に山本君がセレンディピティーで見出したのがこの方法です。当初、私がこの研究はあまり独創性がないと考え、「山本君、ごめん。絶対あかんわ。テーマ失敗したわ。」と、心の中で叫びながら投稿しましたが、何の指摘もなくほぼ投稿と同時に受理されました。山本君の先見力には大変驚き、それ以来、彼を見直して接しています。しかし、山本君のゴールはここではありません。実はこの保護基にはまだまだ山本君のカラクリが埋め込まれており、今、体内不斉合成や体内マテリアル合成に展開しています。本職の NMR を中心にして、今後山本君がこの分子にどのような装飾を施していくか、温かく見てくだされば幸いです。

いったいどんな保護基で、どのような機能を持っているのか、非常に気になりますね!
それでは、インタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

(III)触媒によって Fmoc のような構造に変換できる保護基として 2-(2-ethynylphenyl)-2-(5-methylfuran-2-yl)-ethoxycarbonyl 基 (Epoc を開発しました。Epoc 基は、強塩基性条件を含むさまざまな反応条件に安定ですが、(III)触媒を用いたフルオレン環形成反応によって、Fmoc 基に類似した構造 (Hmocに速やかに変換され、弱塩基で除去できるようになります。すなわち、Epoc 基は金(III)触媒で選択的に除去できる保護基として有用です。Epoc 基の変換反応は固相上でも進行しますので分岐ペプチドや糖鎖の固相合成で分岐点の保護にも使えます。また、水中でもこの変換反応が進行するため、金触媒を用いたプロドラッグの活性化などにも Epoc 基が使えるかもしれません

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

保護基自体の構造を変換して、その性質を変えるという設計に思い入れがあります。 普通の保護基は試薬が保護基の切断を直接促すのに対し、今回の研究のように安定な構造から既知の不安定な構造に変換するという戦略は、保護基の設計として面白いのではないかと個人的に思います。またフルオレン環形成反応は 1 mol% の金触媒を加えただけで室温で 10 分以内に完了し、後は Fmoc 基と同じ条件で脱保護できますので、金触媒選択的でありながら非常に温和で簡便な条件で脱保護できるというのもこの保護基のポイントです。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

ペプチド固相合成での Epoc 基の変換反応の追跡です。固相上でのEpoc基の変換反応を追跡するためには、ペプチドの一部を切り出して分析する必要があります。金触媒が少ない条件 (~1 mol%) では、樹脂に吸着していた微量の金触媒と Epoc 基が切り出しの後に反応して、あたかも樹脂上で変換反応が進行しているように見えていました (液相での Epoc 基はそれほど金触媒と反応しやすいのです)。その結果、Fmoc 基に類似した構造に樹脂上で変換されている (ように見える) にも関わらず、樹脂に塩基を作用させても脱保護されないという怪奇現象に長い間悩まされました。

最終的にペプチドを切り出す際にチオールを加えたところ、樹脂に吸着した金触媒が失活して Epoc 基が未反応の状態で得られたため、金触媒が少ない条件では樹脂上で Epoc 基が変換されていないということを確認できました。地味な検討ですが、固相上での Epoc 基の変換を正しく追跡し、変換反応の条件を最適化する上で重要な実験になりました。

Q4. 将来は化学とどう関わっていきたいですか?

自分にしかできないアプローチで研究を進めていきたいです。私はこれまでに、有機合成だけでなく、 固体NMRによる分子複合体の構造解析もおこなってきました。今回の研究は有機合成のツール開発という形で発表させて頂きましたが、有機合成と分子複合体の観測という2つの武器を駆使して新しく面白いことをしていきたいと思います

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後まで読んで頂き、ありがとうございました。

私自身も保護基の選択で痛い目を見た経験があり、今回の研究で開発した Epoc 基が、保護基のことで困っておられる方の解決策になれば幸いです。

また、Epoc 基の「変換できる」という特性は、保護基としてだけではなく、他のことにも役立つのではないかと思っています。今後も本研究をさらに発展させられるように頑張ります。

研究者の略歴

山本 智也 (やまもと ともや)
所属: 理化学研究所 開拓研究本部 田中生体機能合成化学研究室・基礎科学特別研究員
略歴: 1990年 島根県生まれ
2017年3月 大阪大学大学院理学研究科化学専攻 博士後期課程修了
大阪大学およびミシガン大学での特任研究員を経て2019年7月より現職

金属触媒の中でも金は生体適合性が高いため、その点でも Epoc 基をプロドラッグに用いることは理にかなっていると言えそうです。さらなるご発展を楽しみにしています!ありがとうございました。
それでは、次回のスポットライトリサーチもお楽しみに!

関連リンク

東京工業大学プレスリリース

田中研究室の他のスポットライトリサーチ

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. カーボンナノベルト合成初成功の舞台裏 (2)
  2. 究極の脱水溶媒 Super2(スーパー スクエア):関東化学
  3. 生体分子機械の集団運動の制御に成功:環境適応能や自己修復機能の発…
  4. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  5. アレーン三兄弟をキラルな軸でつなぐ
  6. 日米の研究観/技術観の違い
  7. 試薬の構造式検索 ~便利な機能と使い方~
  8. Mgが実現する:芳香族アミンを使った鈴木―宮浦カップリング

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. イオンの出入りを制御するキャップ付き分子容器の開発
  2. 鋳型合成 Templated Synthesis
  3. 映画「分子の音色」A scientist and a musician
  4. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  5. 連続アズレン含有グラフェンナノリボンの精密合成
  6. デュアルディスプレイDNAコード化化合物ライブラリーの改良法
  7. 「温故知新」で医薬品開発
  8. 山口健太郎 Kentaro Yamaguchi
  9. 史 不斉エポキシ化 Shi Asymmetric Epoxidation
  10. ミック因子 (Myc factor)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

第27回ケムステVシンポ『有機光反応の化学』を開催します!

7月に入り、いよいよ日差しが強まって夏本格化という時期になりました。光のエネルギーを肌で感じられます…

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP