[スポンサーリンク]

化学者のつぶやき

治療応用を目指した生体適合型金属触媒:① 細胞内基質を標的とする戦略

[スポンサーリンク]

反応化学と生命科学の融合を掲げて研究を進める糖化学ノックイン領域ですが、そもそも生体内で働く人工触媒とはどのようなもので、どういう用途可能性があ1るのでしょうか?最初から体内ではたらく生体酵素や、生体適合性の高い有機触媒については徐々に研究が進む潮流下にあります。その一方でより多様な変換を可能とし、応用範囲を劇的に拡張する金属触媒については、諸々の懸念から広く取り入れられているとは言い難い状況です。しかし生体内には金属酵素も存在しているわけで、必ずしも、金属=生体にとって害悪、ということもありません。今回は「金属触媒概念によって治療応用を目指す研究」について取り上げます。

“Catalysis Concepts in Medicinal Inorganic Chemistry”
Silvia Alonso-de Castro, Alessio Terenzi, Juan Gurruchaga-Pereda, Luca Salassa* Chem. Eur. J. 2019, 25, 6651-6660. doi: 10.1002/chem.201806341

【概要】 金属医薬(metallodrugs)を生体内触媒として活用する治療指向型研究に関する総説を紹介する。かつて発達をみせたメタロドラッグ概念(Chem. Rev. 2014, 114, 4540 など)は医薬ケミカルスペースの拡張を意図した思想下に研究されており、化学変化を起こさない静的な分子、もしくは当量のコバレントドラッグとして捉えられてきた。これに触媒能をもたせる研究展開は、その一歩先にある思想と位置づけられる。

序論

「触媒」が有する化学シグナル増幅能と選択性は、投与量を減らし、オフターゲット効果を減ずる目的に利用できる。この潜在的利点は、安全性への懸念がよく取り沙汰される金属医薬の場合に特に重要となる。触媒性医薬には独自の作用機序が関連しており、薬剤抵抗性の回避にも役立つ。従来より金属医薬は、医薬標的(生体高分子)を触媒的損壊/修飾するための酵素模倣体として捉えられてきた(戦略 1)。しかし近年では、金属触媒と生体直交化学が融合する形で、外因性基質(プロドラッグなど)の生物学的環境下における活性化をも可能としている(戦略 2)。また金属錯体/触媒そのものを変換標的にする試みも萌芽をみせている(戦略3)。この分野における進歩を規定しているのは、効率的かつ堅牢な人工触媒の創出研究であることは疑いない。たとえば高濃度の生体分子や反応性化学種は金属触媒を容易に失活・阻害させるが、そのような厳しい環境下でも耐え抜き、機能する必要がある。以下、治療応用文脈下に検討される 3 つの方向性を取り上げる。

戦略1.触媒性メタロドラッグ (細胞内基質が変換対象)

触媒性金属医薬の大多数は、下記2つのいずれかとして機能する。

1) 生体高分子(タンパク質、核酸、オリゴ糖など)の直接触媒分解を誘導し、最終的に致死的な生物学的反応を引き起こす
2) 内因性酸化剤/還元剤の細胞内濃度にミスマッチを促し、最終的に酸化/還元ストレスのいずれかによって細胞死を引き起こす

金属錯体またはイオンが促進する加水分解/酸化が生体高分子を触媒的に分解する研究はよくなされている。70 年代後半に Sigman らによって、[Cu(phen)2]+が酸素依存で DNA の触媒的開裂を進行させることが発見され、分野が開拓された。その後、生物学的ツール(フットプリンティング、遺伝子編集、治療法など)としての活用を目指し、金属錯体を用いる人工ヌクレアーゼが長年にわたり検討されてきた。金属錯体(CoIII-trien/en や FeIII-EDTA など)のペプチド加水分解活性も実証され、タンパク質関連疾患に対処しうる人工プロテアーゼの設計にインスピレーションを与えた。さらにはリガンド配向化学の概念を用い、標的選択性を備える試みも行われている(総説:Curr. Opin. Chem. Biol. 2008, 12, 207)。

90 年代にSigmanらは、CuII錯体のヌクレアーゼ活性を標的選択的な切断へと転用した。触媒は、ヒトおよびウシのCarbonic Anhydrase(CA)に対してsub-μMの親和性を示し、アスコルビン酸ナトリウムの存在下に CA を選択的かつ触媒的に分解した。数年後にSuhらは、[CoIII(cyclen)(OH2)2]3+ (触媒2)と低分子リガンドを組み合わせた人工プロテアーゼを開発した。例えば錯体2aはペプチドデフォルミラーゼを触媒的に分解し、錯体2bはアミロイドβオリゴペプチドの不活性化をもたらした。それぞれ抗菌作用、抗アルツハイマー作用を指向したものである。アミノ末端のCuIIおよびNiII結合モチーフ(ATCUN)は、いくつかの天然タンパク質N末端に見られる金属結合部位である。Cowanらは、これに金属を担持させ(化合物3)、核酸・酵素・糖を標的として触媒的に切断可能であることを実証した。いずれも低分子リガンドをもたせることで標的選択性を担保しており、大腸菌や哺乳類細胞株でも反応進行が確認されている。

細胞系のレドックス恒常性は、触媒性金属医薬の治療応用に向けた魅力ある標的となる。この恒常性は、酸化的/還元的ストレス、すなわち活性酸素種(ROS)および活性窒素種(RNS)と細胞内抗酸化物質との間でミスマッチを誘発することで撹乱される。 その結果、細胞構成要素が損傷し、正常機能から変化が起きる。また細胞レドックス恒常系に絡む化学反応速度を変えることでも干渉が可能である。
光線力学療法(PDT)は、細胞レドックス系に影響を与える触媒的治療アプローチの典型である。既に臨床応用・承認されているものは、光触媒による腫瘍内での1O2と活性酸素の産生を原理基盤としている。PDT用の新たな光増感剤として金属錯体の使用が検討されている。最近第Ib相試験を完了したポリピリジルRu錯体TLD-14334)などが実例であるが、臨床試験まで進んでいるものは少ない。

金属触媒は、スーパーオキシドジスムターゼ(SOD)の類縁体として、生理学的条件下での酸化ストレスマネジメントのために研究されてきた。 SODミミックの中でも、MnII錯体であるcalmangafodipir5)と M404036)は、それぞれ転移性大腸がん ・ 転移性メラノーマ ・ 腎がんを対象とした臨床試験が実施されている。

別の方法としては、細胞内レドックス恒常性と外因性物質の無毒化に関与するグルタチオン(GSH)を標的としたアプローチがある。Sadlerらは、RuII触媒7aおよび7bがGSHの触媒的酸化二量化を進行させることを見いだした。金属中心とredox non-innocent配位子(アゾ基)の相互作用が触媒機構の鍵である。7a7bを投与 した ヒト卵巣がん細胞(A2780)およびヒト肺がん細胞(A549)の細胞生存率は、GSH の枯渇と活性酸素レベルの上昇により有意に影響を受けた。

ニコチンアミドアデニンジヌクレオチド(NADH/NAD+系は、細胞の酸化還元バランスと抗酸化防御の維持に重要であり、NADH/NAD+平衡の変動は殺細胞戦略の一つとなる。Steckhanらは80年代末に 、緩衝液中にてギ酸塩の存在下、NAD(P)+の還元を進行させてNAD(P)Hを再生できる金属触媒[(Cp*)Rh(bpy)Cl]+を初めて報告した。Soldevilla-Barredaらは、野依型の水溶性RuII錯体8を使用することで同様の反応が進行することを確認している。これらのRuII錯体はA2780細胞に対して中程度の細胞毒性を示したが、ギ酸塩と共培養することで NADH/NAD+系に影響を与える結果、生存率は50倍低下した。Liu らは、IrIII錯体 [(CpXbiph)Ir(phpy)Cl]および[(CpXbiph)Ir(phpy)(py)]+(9a, 9b)が、NADHからO2への電子移動を媒介してH2O2を生成し、がん細胞株において酸化ストレスと細胞死を誘導することを実証した。塩化物9aよりも9bが高活性であり、GSHによる加水分解・不活性化が遅いためだと考察されている。Doらは非毒性の[(Cp*)Ir(diimine)Cl]+錯体を用いて NAD+/NADH 比を変化させ、癌細胞のカルボプラチンに対する選択的化学増感を達成した。同グループはまた、NADHとCp*Ir 触媒を組み合わせることで、生体環境下で低分子アルデヒドの触媒変換が可能であることも示した。アルデヒドの毒性からレスキューするための酵素模倣体と捉えることができる。

がん細胞が担う主要な代謝変換を触媒することで、癌細胞を脅かすことができる。たとえばがん細胞で過剰発現している乳酸脱水素酵素が担う変換(ピルビン酸→乳酸)を人工触媒で妨害すると、がん細胞がエネルギー・代謝物を利用できなくなる。キラル16電子OsII錯体(10)は、ギ酸ナトリウムまたはN-ホルミルメチオニンをヒドリド源として使用し、ヒト卵巣癌細胞(A2780)においてピルビン酸をD-乳酸へ不斉還元する。乳酸エナンチオマーの濃度が変化し、ピルビン酸が枯渇すると、細胞動態に大きな影響を与える。この活性は DNA 非依存的であるため、薬剤抵抗性を克服する新規メカニズムになると期待される。


以上のアプローチは、近年発展の著しい人工金属酵素の設計戦略と融合させることでさらなる発展が期待される。すなわち触媒効率・選択性の向上だけでなく、内在性分子による触媒失活からの保護にも役立つ。さらに、固有の機能(例えば基質結合性や酸化還元特性)を持つタンパク質を足場として利用することで、二次的メカニズムを介して薬効を増強・拡張できるとも考えられる。

 

次回記事②に続く】

【本シリーズ記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事に転記し、一般向けに公開しているものです】

関連リンク

 

Avatar photo

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. 今さら聞けないカラムクロマト
  2. 荒木飛呂彦のイラストがCell誌の表紙を飾る
  3. トシルヒドラゾンとボロン酸の還元的カップリング反応とその応用展開…
  4. 薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界…
  5. チオール架橋法による位置選択的三環性ペプチド合成
  6. プロテオミクス現場の小話(1)前処理環境のご紹介
  7. 学生に化学論文の書き方をどうやって教えるか?
  8. サリンを検出可能な有機化合物

注目情報

ピックアップ記事

  1. 研究助成金&海外留学補助金募集:公益財団法人アステラス病態代謝研究会
  2. Q&A型ウェビナー マイクロ波化学質問会
  3. もし炭素原子の手が6本あったら
  4. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらしい
  5. 中高生・高専生でも研究が学べる!サイエンスメンタープログラム
  6. ロバート・ランガー Robert S. Langer
  7. 話題のAlphaFold2を使ってみた
  8. フラックス結晶育成法入門
  9. 2010年ノーベル化学賞予想―海外版
  10. 画期的な糖尿病治療剤を開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

日本プロセス化学会2024ウインターシンポジウム

有機合成化学を基盤に分析化学や化学工学なども好きな学生さん、プロセス化学を知る絶好の…

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP