[スポンサーリンク]

化学者のつぶやき

ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!

[スポンサーリンク]

イリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオ、ジアステレオ選択的プロパルギル位C–H結合アリル化が開発された。配位子によりジアステレオ選択性を逆転させることができる。

プロパルギル位C–H官能基化

プロパルギル位が置換されたキラルなアルキンは、有機合成における有用なビルディングブロックである。これらの化合物の不斉合成法として、金属アセチリドの求核付加反応や、1,3-エンインの付加反応、プロパルギルアルコール類やハロゲン化物の求核置換反応が知られる(図1A)[1]。それに対して、プロパルギル位C–H官能基化による不斉合成法は少ない[2]。例として、金属ナイトレンや金属カルベンによる触媒的なプロパルギル位C–H挿入反応が挙げられる(図1B)。

本論文著者であるピッツバーグ大学Wang助教授らは、以前鉄触媒を用いたプロパルギル位C–H官能基化を報告した(図1C)[3a]。本反応では、鉄触媒がアルキンに配位することで塩基によるプロパルギル位の脱プロトン化が促進され、生じるアレニル鉄種がアルデヒドなどの求電子剤と反応する。後に、Zhangらは類似の反応プロセスを用いて金触媒によるプロパルギル位の分子内不斉C–H官能基化を達成した[3b]

今回、Wangらはイリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオおよびジアステレオ選択的プロパルギル位C–H結合アリル化を開発した(図1D)。興味深いことに、用いる配位子をキラルにするとアンチ体が、ラセミの配位子ではシン体が得られる。

図1. (A) キラルプロパルギル化合物の一般的合成法 (B) プロパルギル位C–H挿入反応 (C) アレニル金属種を経るC–H官能基化 (D) 今回研究

 

“Enantioselective and Diastereodivergent Allylation of Propargylic C–H Bonds”
Zhu, J.; Wang, Y.; Charlack, A. D.; Wang, Y.-M. J. Am. Chem. Soc. 2022, 144, 15480–15487 DOI: 10.1021/jacs.2c07297

論文著者の紹介

研究者 : Yi-Ming Wang (王 亦鸣)

研究者の経歴

2004–2008 B.Sc. Harvard University, USA (Prof. Andrew G. Myers)
2008–2013 Ph.D. University of California, Berkeley, USA (Prof. F. Dean Toste)
2013–2017 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2017–                            Assistant Professor, University of Pittsburgh, USA
研究内容 : 鉄触媒を用いたアルキン、アルケン、アレンのC–H官能基化、ビニルカチオン化学

 

論文の概要

著者らは、アルキン1とアリルエーテル2[Ir(cod)Cl]2/(S)-L触媒と2,2,6,6-テトラメチルピペリジン(TMPH)、BF3·OEt2存在下反応させるとアンチ体の1,5-エンイン3が高エナンチオおよびジアステレオ選択的に得られることを見いだした(図2A)。配位子をラセミ体(±)-Lとするとシン体4が得られる。種々のアリールアルキンに加えアルケニルアルキンを用いても反応が進行し、対応する1,5-エンインが生成する(3a, 4a, 3b )。高反応性のトシラートをもつ1,5-エンイン(3c, 4c)も合成可能である。

本反応で得られる3cを誘導体化することでキラルな骨格が様々構築できる(図2B)。例えば、金触媒による環化異性化により[3.1.0]シクロヘキセン5が、またヨードアレーン6とカテラニ型反応させることでインドール7が合成できた。

様々な機構解明実験の結果、以下の反応機構が提唱されている(図2C)。初めに、系中で生じたカチオン性イリジウム触媒I2aが配位しアリルエーテル錯体IIが生じ、これにアルキン1aが配位して錯体IIIを形成する。続いて、TMPHがプロパルギル位C–H結合を脱プロトン化しアレニルイリジウムIVが生じた後、アリルエーテルの酸化的付加によりπ-アリルイリジウムVとなる。還元的脱離によりVから3aが得られるとともに、Iが再生する。配位子と3aのエナンチオ過剰率の間に非線形効果が見られたことから、2つの配位子がイリジウム中心に配位した錯体が活性種であることがわかっている。本活性種により、ラセミのアリルエーテルが速度論的光学分割され、(S)-Lを配位子にした際に(S)-2が優先して反応することが確かめられている。なお、配位子によるジアステレオ選択性の逆転に関する結論は出ておらず、続報が待たれる。

図2. (A) 反応条件と基質適用範囲 (B) 生成物3cの誘導体化 (C) 推定反応機構

 

以上、イリジウム触媒を用いたプロパルギル位のエナンチオ、ジアステレオ選択的C–Hアリル化が開発された。配位子によるジアステレオ選択性の逆転も含め、本イリジウム触媒の多機能っぷりに思わずひっくり返ってしまいそうである。

参考文献

  1. (a) Nishibayashi, Y. Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles. Synthesis 2012, 2012, 489–503. DOI: 1055/s-0031-1290158 (b) Zhang, D.-Y.; Hu, X.-P. Recent Advances in Copper-Catalyzed Propargylic Substitution. Tetrahedron Lett. 2015, 56, 283–295. DOI: 10.1016/j.tetlet.2014.11.112 (c) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level: 1,3-Enynes as Allenylmetal Equivalents. Angew. Chem., Int. Ed. 2012, 51, 2972–2976. DOI: 10.1002/anie.201200239
  2. (a) Ju, M.; Zerull, E. E.; Roberts, J. M.; Huang, M.; Guzei, I. A.; Schomaker, J. M. Silver-Catalyzed Enantioselective Propargylic C–H Bond Amination through Rational Ligand Design. Am. Chem. Soc. 2020, 142, 12930–12936. DOI: 10.1021/jacs.0c05726 (b) Liu, Z.; Qin, Z.-Y.; Zhu, L.; Athavale, S. V.; Sengupta, A.; Jia, Z.-J.; Garcia-Borras̀, M.; Houk, K. N.; Arnold, F. H. An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes. J. Am. Chem. Soc. 2022, 144, 80–85. DOI: 10.1021/jacs.1c11340
  3. (a) Wang, Y.; Zhu, J.; Durham, A. C.; Lindberg, H.; Wang, Y.-M. α-C–H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes. Am. Chem. Soc. 2019, 141, 19594–19599. DOI: 10.1021/jacs.9b11716 (b) Li, T.; Cheng, X.; Qian, P.; Zhang, L. Gold-Catalysed Asymmetric Net Addition of Unactivated Propargylic C–H Bonds to Tethered Aldehydes. Nat. Catal. 2021, 4, 164–171. DOI: 10.1038/s41929-020-00569-8
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SDFって何?~化合物の表記法~
  2. 鍛冶屋はなぜ「鉄を熱いうちに」打つのか?
  3. カラムやって
  4. 巨大複雑天然物ポリセオナミドBの細胞死誘導メカニズムの解明
  5. 触媒的炭素–水素結合活性化による含七員環ナノカーボンの合成 〜容…
  6. 私がケムステスタッフになったワケ(3)
  7. 分取薄層クロマトグラフィー PTLC (Preparative …
  8. アメリカ化学留学 ”立志編 ー留学の種類ー̶…

注目情報

ピックアップ記事

  1. 新しい糖尿病治療薬認可へ~人体機能高めるタイプから吸入式まで
  2. 第54回「光を使ってレゴブロックのように炭素と炭素を繋げる」吉見 泰治 教授
  3. 研究室でDIY!~割れないマニホールドをつくろう~
  4. 武装抗体―化学者が貢献できるポイントとは?
  5. 植物性油の再加熱によって毒物が発生
  6. 鉄鋼のように強いポリプロピレン
  7. 有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)
  8. 山西芳裕 Yoshihiro Yamanishi
  9. ハネウェル社、アルドリッチ社の溶媒・無機試薬を販売へ
  10. 中国へ行ってきました 西安・上海・北京編③

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP