[スポンサーリンク]

化学者のつぶやき

ジアステレオ逆さだぜ…立体を作り分けるIr触媒C–Hアリル化!

[スポンサーリンク]

イリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオ、ジアステレオ選択的プロパルギル位C–H結合アリル化が開発された。配位子によりジアステレオ選択性を逆転させることができる。

プロパルギル位C–H官能基化

プロパルギル位が置換されたキラルなアルキンは、有機合成における有用なビルディングブロックである。これらの化合物の不斉合成法として、金属アセチリドの求核付加反応や、1,3-エンインの付加反応、プロパルギルアルコール類やハロゲン化物の求核置換反応が知られる(図1A)[1]。それに対して、プロパルギル位C–H官能基化による不斉合成法は少ない[2]。例として、金属ナイトレンや金属カルベンによる触媒的なプロパルギル位C–H挿入反応が挙げられる(図1B)。

本論文著者であるピッツバーグ大学Wang助教授らは、以前鉄触媒を用いたプロパルギル位C–H官能基化を報告した(図1C)[3a]。本反応では、鉄触媒がアルキンに配位することで塩基によるプロパルギル位の脱プロトン化が促進され、生じるアレニル鉄種がアルデヒドなどの求電子剤と反応する。後に、Zhangらは類似の反応プロセスを用いて金触媒によるプロパルギル位の分子内不斉C–H官能基化を達成した[3b]

今回、Wangらはイリジウム触媒を用いたアルキンとアリルエーテルとのエナンチオおよびジアステレオ選択的プロパルギル位C–H結合アリル化を開発した(図1D)。興味深いことに、用いる配位子をキラルにするとアンチ体が、ラセミの配位子ではシン体が得られる。

図1. (A) キラルプロパルギル化合物の一般的合成法 (B) プロパルギル位C–H挿入反応 (C) アレニル金属種を経るC–H官能基化 (D) 今回研究

 

“Enantioselective and Diastereodivergent Allylation of Propargylic C–H Bonds”
Zhu, J.; Wang, Y.; Charlack, A. D.; Wang, Y.-M. J. Am. Chem. Soc. 2022, 144, 15480–15487 DOI: 10.1021/jacs.2c07297

論文著者の紹介

研究者 : Yi-Ming Wang (王 亦鸣)

研究者の経歴

2004–2008 B.Sc. Harvard University, USA (Prof. Andrew G. Myers)
2008–2013 Ph.D. University of California, Berkeley, USA (Prof. F. Dean Toste)
2013–2017 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2017–                            Assistant Professor, University of Pittsburgh, USA
研究内容 : 鉄触媒を用いたアルキン、アルケン、アレンのC–H官能基化、ビニルカチオン化学

 

論文の概要

著者らは、アルキン1とアリルエーテル2[Ir(cod)Cl]2/(S)-L触媒と2,2,6,6-テトラメチルピペリジン(TMPH)、BF3·OEt2存在下反応させるとアンチ体の1,5-エンイン3が高エナンチオおよびジアステレオ選択的に得られることを見いだした(図2A)。配位子をラセミ体(±)-Lとするとシン体4が得られる。種々のアリールアルキンに加えアルケニルアルキンを用いても反応が進行し、対応する1,5-エンインが生成する(3a, 4a, 3b )。高反応性のトシラートをもつ1,5-エンイン(3c, 4c)も合成可能である。

本反応で得られる3cを誘導体化することでキラルな骨格が様々構築できる(図2B)。例えば、金触媒による環化異性化により[3.1.0]シクロヘキセン5が、またヨードアレーン6とカテラニ型反応させることでインドール7が合成できた。

様々な機構解明実験の結果、以下の反応機構が提唱されている(図2C)。初めに、系中で生じたカチオン性イリジウム触媒I2aが配位しアリルエーテル錯体IIが生じ、これにアルキン1aが配位して錯体IIIを形成する。続いて、TMPHがプロパルギル位C–H結合を脱プロトン化しアレニルイリジウムIVが生じた後、アリルエーテルの酸化的付加によりπ-アリルイリジウムVとなる。還元的脱離によりVから3aが得られるとともに、Iが再生する。配位子と3aのエナンチオ過剰率の間に非線形効果が見られたことから、2つの配位子がイリジウム中心に配位した錯体が活性種であることがわかっている。本活性種により、ラセミのアリルエーテルが速度論的光学分割され、(S)-Lを配位子にした際に(S)-2が優先して反応することが確かめられている。なお、配位子によるジアステレオ選択性の逆転に関する結論は出ておらず、続報が待たれる。

図2. (A) 反応条件と基質適用範囲 (B) 生成物3cの誘導体化 (C) 推定反応機構

 

以上、イリジウム触媒を用いたプロパルギル位のエナンチオ、ジアステレオ選択的C–Hアリル化が開発された。配位子によるジアステレオ選択性の逆転も含め、本イリジウム触媒の多機能っぷりに思わずひっくり返ってしまいそうである。

参考文献

  1. (a) Nishibayashi, Y. Transition-Metal-Catalyzed Enantioselective Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Nucleophiles. Synthesis 2012, 2012, 489–503. DOI: 1055/s-0031-1290158 (b) Zhang, D.-Y.; Hu, X.-P. Recent Advances in Copper-Catalyzed Propargylic Substitution. Tetrahedron Lett. 2015, 56, 283–295. DOI: 10.1016/j.tetlet.2014.11.112 (c) Geary, L. M.; Woo, S. K.; Leung, J. C.; Krische, M. J. Diastereo- and Enantioselective Iridium Catalyzed Carbonyl Propargylation from the Alcohol or Aldehyde Oxidation Level: 1,3-Enynes as Allenylmetal Equivalents. Angew. Chem., Int. Ed. 2012, 51, 2972–2976. DOI: 10.1002/anie.201200239
  2. (a) Ju, M.; Zerull, E. E.; Roberts, J. M.; Huang, M.; Guzei, I. A.; Schomaker, J. M. Silver-Catalyzed Enantioselective Propargylic C–H Bond Amination through Rational Ligand Design. Am. Chem. Soc. 2020, 142, 12930–12936. DOI: 10.1021/jacs.0c05726 (b) Liu, Z.; Qin, Z.-Y.; Zhu, L.; Athavale, S. V.; Sengupta, A.; Jia, Z.-J.; Garcia-Borras̀, M.; Houk, K. N.; Arnold, F. H. An Enzymatic Platform for Primary Amination of 1-Aryl-2-alkyl Alkynes. J. Am. Chem. Soc. 2022, 144, 80–85. DOI: 10.1021/jacs.1c11340
  3. (a) Wang, Y.; Zhu, J.; Durham, A. C.; Lindberg, H.; Wang, Y.-M. α-C–H Functionalization of π-Bonds Using Iron Complexes: Catalytic Hydroxyalkylation of Alkynes and Alkenes. Am. Chem. Soc. 2019, 141, 19594–19599. DOI: 10.1021/jacs.9b11716 (b) Li, T.; Cheng, X.; Qian, P.; Zhang, L. Gold-Catalysed Asymmetric Net Addition of Unactivated Propargylic C–H Bonds to Tethered Aldehydes. Nat. Catal. 2021, 4, 164–171. DOI: 10.1038/s41929-020-00569-8
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 新風を巻き起こそう!ロレアル-ユネスコ女性科学者日本奨励賞201…
  2. 計算と実験の融合による新反応開発:対称及び非対称DPPEの簡便合…
  3. 階段状分子の作り方
  4. ヒト遺伝子の ヒット・ランキング
  5. SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?
  6. 拡張Pummerer反応による簡便な直接ビアリール合成法
  7. アルコールを空気で酸化する!
  8. 分極したBe–Be結合で広がるベリリウムの化学

注目情報

ピックアップ記事

  1. 祝ふぐ!新たなtetrodotoxinの全合成
  2. 第59回―「機能性有機ナノチューブの製造」清水敏美 教授
  3. pre-ELM-11
  4. 孫悟飯のお仕事は?
  5. キレトロピー反応 Cheletropic Reaction
  6. DMFを選択的に検出するセンサー:アミド分子と二次元半導体の特異な相互作用による検出原理を発見
  7. デニス・ドーハティ Dennis A. Dougherty
  8. デヴィッド・ナギブ David A. Nagib
  9. ポリアクリル酸ナトリウム Sodium polyacrylate
  10. 相次ぐ有毒植物による食中毒と放射性物質に関連した事件

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP