[スポンサーリンク]

化学者のつぶやき

配位子を着せ替え!?クロースカップリング反応

[スポンサーリンク]

三級アルキルブロミドと種々のアリール求電子剤とのクロスカップリング反応が開発された。ニッケルの配位子を系中で交換させることがC–C結合形成の鍵である。

ニッケル触媒を用いた求電子剤同士のクロスカップリング反応

求電子剤同士でのクロスカップリング反応(XEC反応)は求核剤を調製せずにC–C結合を形成できる強力な手法である。主にピリジル配位子をもつニッケル触媒存在下、アルキルハライドとアリール求電子剤を反応させるとC(sp3)–C(sp2)結合形成ができる(図1A)[1]。四級炭素を構築できる有効な手法だが、アリールクロリドやアリールトリフラートを用いたXEC反応は未発展である。また三級アルキルハライドとのカップリングでは、これまで電子不足なアリールブロミドもしくはアリールヨージドしか利用できなかった[2]
XEC反応はアルキルハライドとNi(I)の反応により生成するラジカルと、アリールハライドがNi(0)に酸化的付加した後の錯体とが反応して、クロスカップリング生成物を与えると考えられてきた。中間体のニッケル錯体が不安定なため反応機構解明は困難であったが、ごく最近複数のグループから、還元条件におけるXEC反応ではNi(I)のみが求電子剤と反応することが提唱された[3]
オハイオ州立大学のSevovらは、XEC反応がNi(I)と同程度の反応速度で反応する2つの求電子剤の間で起こりやすいと推測した(図1B)。実際に、Ni(I)と反応性の高い三級アルキルブロミドや、反応性の低いアリールクロリドとアリールトリフラートではXEC反応が起こりにくい。このような基質適用範囲の制限を改善するため、著者らはNi(0)に改めて着目した。Ni(0)はアルキルハライドとの反応によるラジカル生成よりも、種々のアリール求電子剤の酸化的付加を優先的に起こす。このNi(0)を利用することで、従来想定されていたNi(0)とNi(I)が共存するXEC反応を実現できると期待される。しかし、還元条件下でNi(I)を経由せずにNi(0)を生成することは困難である。ピリジル配位子をもつNi(II)は一電子が関与する酸化還元反応を起こしやすく、また、Ni(0)はNi(II)と均化し容易にNi(I)を与える。一方で、ホスフィン配位子を有するニッケル錯体はNi(I)を生成しにくいことが知られる[4]。そこで、著者らは反応系中でNi上の配位子を交換し、Ni(0)とNi(I)を共存させることを考えた。つまり、ピリジル配位子をもつNi(I)がアルキルブロミドと反応し、続いて配位子交換によりホスフィン配位子が配位したNi(0)がアリール求電子剤と反応することで、XEC反応が進行すると期待した(図1C)。実際に、著者らは反応系中でのニッケル触媒の配位子の交換を実現し、電解反応によって三級アルキルブロミドと種々のアリール求電子剤とのXEC反応が進行することを見いだした(図1D)。

図1. (A) XEC反応、(B) Ni(I)と各求電子剤の反応性、(C) 各求電子剤の活性化法、(D) アリール求電子剤と三級アルキルブロミドとのXEC反応

 

“Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling”
Hamby, T. B.; LaLama, M. J.; Sevov, C. S. Science 2022, 376, 410–416.
DOI: 10.1126/science.abo0039

論文著者の紹介

研究者:Christo S. Sevov

研究者の経歴:
2005–2009 B.Sc. in Chemistry, University of Notre Dame, USA (Prof. Olaf G. Wiest)
2009–2011 University of Illinois Urbana-Champaign, USA (Prof. John F. Hartwig)
2011–2014 Ph.D. in Chemistry, University of California, Berkeley, USA (Prof. John F. Hartwig)
2014–2017 Postdoc, University of Michigan, USA (Prof. Melanie S. Sanford)
2017–                             Assistant Professor, The Ohio State University, USA

研究内容:有機金属化学、電気化学

論文の概要

検討の結果、著者らはピリジル配位子(bpp)をもつマンガン触媒とホスフィン配位子(iPrQ)をもつニッケル触媒存在下、電解反応により三級アルキルブロミドと種々の求電子剤のXEC反応が進行することを見いだした(図 2A)。メトキシ基を有するアリールブロミド(3a)のほか、インドール骨格のアリールブロミド(3b)やビニルブロミド(3c)も利用できた。ボリル基を有するアリールクロリド(3d)では化学選択的にXEC反応が進行し、抗炎症薬であるインドメタシンも中程度の収率で3eを与えた。また、本反応はアリールトリフラートやアルケニルトリフラートにも適用でき、天然物誘導体においてもカップリング反応が進行して3f3gが得られた。なお、アリールクロリドやアリールトリフラートの反応では、三級アルキルブロミドだけでなく二級アルキルブロミドともXEC反応が進行した。
反応機構は次のように提唱されている(図 2B)。まず、ピリジル配位子を有するニッケル触媒Ni1の一電子還元、続くホスフィン配位子との配位子交換が進行し、安定な0価のニッケル錯体Ni2が生じる。続いてアリール求電子剤1の酸化的付加によりNi3となった後に、再び配位子交換をすることでNi4が生成する。最後に三級アルキルブロミドが1価のニッケル錯体に還元されて生じたアルキルラジカル2′Ni4が反応することで、クロスカップリング体3が得られる。なお、各種機構解明実験により、1) 電解条件下Ni1からNi2が生成すること、2) 三級アルキルブロミド共存下Ni2がアリールブロミドと優先的に反応しNi3を与えること、3) Ni3と三級アルキルブロミドの反応はほとんど進行しないこと、4) Ni3とピリジル配位子(bpp)からNi4が生成し、三級アルキルブロミドとの反応により3が得られることが示されている(詳細は本文参照)。

図2. (A) 最適条件と基質適用範囲 (B) 推定反応機構

 

以上、著者らは反応系中でニッケル触媒の配位子交換をすることで、これまで達成されていなかった求電子剤のXEC反応を進行させた。金属上の配位子を「着せ替える」ようにスムーズな配位子交換が実現されており、同様の配位子交換による更なるXEC反応の発展が期待される。

 参考文献

  1. (a) Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Reductive Couplings. Curr. Chem. 2016, 374, 43. DOI: 10.1007/s41061-016-0042-2 (b) Weix, D. J. Methods and Mechanisms for Cross-Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc. Chem. Res. 2015, 48, 1767–1775. DOI: 10.1021/acs.accounts.5b00057
  2. 数少ない3級アルキルブロミドを用いたXEC反応の例として以下の報告がある。(a) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11562–11565. DOI: 10.1021/jacs.5b06255 (b) Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. Ni-Catalyzed Reductive Coupling of Electron-Rich Aryl Iodides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 14490–14497. DOI: 10.1021/jacs.8b09473 (c) Liu, J.; Ye, Y.; Sessler, J. L.; Gong, H. Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives. Acc. Chem. Res. 2020, 53, 1833–1845. DOI: 10.1021/acs.accounts.0c00291
  3. (a) Kawamata, Y.; Vantourout, J. C.; Hickey, D. P.; Bai, P.; Chen, L.; Hou, Q.; Qiao, W.; Barman, K.; Edwards, M. A.; Garrido-Castro, A. F.; deGruyter, J. N.; Nakamura, H.; Knouse, K.; Qin, C.; Clay, K. J.; Bao, D.; Li, C.; Starr, J. T.; Garcia-Irizarry, C.; Sach, N.; White, H. S.; Neurock, M.; Minteer, S. D.; Baran, P. S. Electrochemically Driven, Ni-Catalyzed Aryl Amination: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141, 6392–6402. DOI: 10.1021/jacs.9b01886 (b) Till, N. A.; Oh, S.; MacMillan, D. W. C.; Bird, M. J. The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. J. Am. Chem. Soc. 2021, 143, 9332–9337. DOI: 10.1021/jacs.1c04652 (c) Sun, R.; Qin, Y.; Nocera, D. G. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew. Chem., Int. Ed. 2020, 59, 9527–9533. DOI: 10.1002/anie.201916398
  4. Kalvet, I.; Guo, Q.; Tizzard, G. J.; Schoenebeck, F. When Weaker Can Be Tougher: The Role of Oxidation State (I) in P- vs N-Ligand-Derived Ni-Catalyzed Trifluoromethylthiolation of Aryl Halides. ACS Catal. 2017, 7, 2126–2132. DOI: 1021/acscatal.6b03344
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 向かい合わせになったフェノールが織りなす働き
  2. 地方の光る化学企業 ~根上工業殿~
  3. 2007年度ノーベル化学賞を予想!(5)
  4. 【日産化学】画期的な生物活性を有する新規除草剤の開発  ~ジオキ…
  5. 静電相互作用を駆動力とする典型元素触媒
  6. 新規化合物データチェックリストとWord整形プログラムver2
  7. 高専シンポジウム in KOBE に参加しました –その 2: …
  8. アジサイから薬ができる

注目情報

ピックアップ記事

  1. 高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–
  2. 高専の化学科ってどんなところ? -その 2-
  3. 多孔質ガス貯蔵のジレンマを打ち破った MOF –質量でもよし、体積でもよし–
  4. 有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing
  5. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  6. 条件最適化向けマテリアルズ・インフォマティクスSaaS : miHubのアップデートのご紹介
  7. カスケードDA反応による(+)-Pedrolideの全合成ダダダダ!
  8. 炭素繊維は鉄とアルミに勝るか? 1
  9. 触媒表面に吸着した分子の動きと分子変換過程を可視化~分子の動きが触媒性能に与える影響を解明~
  10. 次世代分離膜の開発、実用化動向と用途展開 完全網羅セミナー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

細谷 昌弘 Masahiro HOSOYA

細谷 昌弘(ほそや まさひろ, 19xx年xx月xx日-)は、日本の創薬科学者である。塩野義製薬株式…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP