[スポンサーリンク]

一般的な話題

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

[スポンサーリンク]

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前回は、化学セッションの口頭発表から、和歌山高専による地元愛の溢れる研究を紹介しました。今回は、材料セッションのポスター発表から、米子高専 物質工学科谷藤研究室、菅野由稀さんの発表について紹介します。

天然タンパク質を用いた固体高分子形燃料電池の改良

尿素を直接燃料とした発電性能の評価

概要

一般的には食品廃棄物として処理される卵の殻の膜を、燃料電池の電解質膜として使用すると、牛の尿を燃料に用いて発電できた、という研究です。

背景

燃料電池は、水素酸素の化学反応によって電気エネルギーを取り出す装置です。燃料さえ供給すればいつでもどこでも電気を取り出すことができるため、新たなエネルギー変換装置として活発に研究が行われています。なかでも、固体高分子形燃料電池は、電池構成が単純で、室温付近でも作動するなどのメリットがあります1。また、水素の代わりにメタノールを燃料に使用することもできます (下図)。水素は常温常圧で気体なので貯蔵·運搬することが困難ですが、メタノールは液体なので持ち運びするには便利です。

 

問題設定

現在、固体高分子形燃料電池の「固体高分子」にあたる部分 (電解質膜) には、パーフルオロスルホン酸系の合成高分子である Nafion が使用されるのが一般的です。しかし、それらの膜を用いたメタノール燃料電池では、メタノールが膜を透過して空気極側 (酸素極側) へ移動する問題 (いわゆるクロスオーバー) が起こります。これは、電池電圧の低下を招きます。

一方で、燃料自体にも不満があります。燃料を供給すればどこでも電気を得られることが燃料電池の利点ですが、メタノールや水素は誰でもどこでも入手できる化学物質とは言いがたいです (いつも実験で化学薬品を扱っている化学者の立場の話ではありませんよ)。もっと日常的に存在する化学物質を燃料に使用することができれば、インフラが整っていない地域にも燃料電池を供給する価値が生まれます。

以上のことから、燃料を漏洩しにくい膜新しい燃料の探索が求められています。

アプローチ

これまでに、米子高専の谷藤研究室では卵殻膜を用いた新しい材料開発に取り組んで来ました2。卵の殻を割ると、硬い殻の内側に半透明な薄い膜 (卵殻膜) があることは、注意深い方なら知っているかと思います。しかし、その膜の本来の役割をご存知でしょうか。その役割とは、中の水分を保持して漏らさないこと、そして孵化のための呼吸をできるように空気を透過させることです。このうち、水分に対する防漏洩機能が、クロスオーバーの抑制にも有効なのでは?という発想が浮かびます。というわけで、普通は卵の外殻と一緒にゴミ箱に行ってしまう卵殻膜を活用する方法の 1 つとして、それを燃料電池のプロトン交換膜に応用する研究に着手したわけです。

実際に谷藤研究室では、これまでに卵殻膜を利用した燃料電池の開発に成功しています (外部リンク:女子高専生の研究に海外も大注目!卵の膜を使って燃料電池の価格を 55 分の 1 に) 。

今回は、その卵殻膜を利用した燃料電池をさらに発展させるため、私たちの身近に存在する化学物質として、尿素を燃料に使用することを目指しました。尿素は塩基性条件で下の反応式のように分解され、これをアノード反応に利用できます3。そして、尿素は「尿」という名の通り尿に含まれる化学物質であり6、人間が日々体内で生成します。したがって、尿素燃料電池を実現できれば、文字どおり人間が生活する場所ならどこでも発電可能になります。今回は、この卵殻膜を利用した尿素燃料電池の性能評価と性能改善に取り組みました。

実験と結果

卵から取り出した卵殻膜を金属塩化物水溶液に浸漬させました。乾燥後、膜を切り整えて、膜の両面に白金をコートしました。ここに、3% メタノール水溶液を滴下すると、Nafion 膜を用いた場合の 1/9 程度の出力ではあるものの、発電できました。3% 尿素水溶液を滴下した場合にも、速やかに同程度の出力で発電しました。なお、Nafion 膜を用いた同様の装置で実験した場合、尿素水溶液では発電しませんでした。

続いて、黒毛和牛の尿をそのまま燃料に用いて発電を試みました。その結果、きちんと動作することを確認できました。さらに、セルを数個直列することで、LED を点灯させることにも成功しました。

コメント

アンモニアを燃料電池に使用できることは存じておりましたが、尿素を燃料に使えることは知りませんでした。調べてみると、尿素を用いた燃料電池自体は他でも研究されているようです3–5。ただし、この研究において、食品廃棄物である卵の殻を用いてそれを実現させたことは驚くべきことです。経済面資源の有効活用法としての価値を考慮すると、すごくインパクトのある研究だと思います。

研究の発展を期待して、おこがましく議論すべき点を挙げますと、発電効率です。「実験と結果」の欄でも書きましたが、Nafion を用いたメタノール燃料電池の場合と比べると、現状は出力が劣っていることは否めません。燃料電池では電圧を稼ぐためにセルを積層する手段も取れますが、個々のセルの出力を向上させることは今後の課題になるのではないかと思います。

また、使用している卵殻膜も、現状は廃棄物の卵ではないようです。つまり、この燃料電池を作成するために、新しい卵の中身を取り出し、さらに酸で卵の外殻を溶かした後に、内膜を利用しているようです。内膜の小さな断片を接合してセルを作成した場合についても発電を確認できたそうなのですが、それを行う手間などを考えると、実用化に向けた課題はまだまだ多そうです。

今後の発展がとっても楽しみです。引き続きがんばってください!

総括

というわけで、普段はスポットライトが当たりにくい高専の化学系の研究を紹介いたしました。こちらの記事では、「高専では卒研が大学ほど活発ではない」と誤解を招くようなことを書いてしまいましたが、大学とは研究の視点が違うだけで、一所懸命頑張っています。実際、高専では企業と共同研究している場合があり、今回取り上げたような工学的視点を持った研究は強いです。

高専生にメッセージ

他人事だと思ってこの記事を読んでいるそこの高専生ッ!高専生はレポートやテストに追われがちで、高専シンポジウムのような学会に出向くことは敬遠してしまうかもしれませんが、参加してみると楽しいですよ。他高専の研究を覗いて見たいという意識高い動機もよし、他高専生と触れ合って友達を作りたいという高専生らしからぬコミュ力を発揮するもよし、折角の遠征なので観光を楽しむもよしです。ぜひ、次回は気分転換の旅行感覚で参加して見てはいかがでしょうか。

関連記事

外部リンク

参考文献

  1. 松田好晴, 岩倉千秋 「第 2 版 電気化学概論」丸善出版株式会社, 2014, pp 108–113.
  2. 田中美樹, 小西那奈, 田原早央莉, 松井千佳, 小林周平, 可知佳晃, 谷藤尚貴 「卵殻膜が食品の劣化防止剤に生まれ変わるリサイクル法の開発化学と生物 201553, 335–337 (DOI: 10.1271/kagakutoseibutsu.53.335).
  3. Lan, R.; Tao, S.; Irvine, J. T. S. Energy Environ. Sci. 2010, 3, 438–441 (DOI: 10.1039/b924786f).
  4. Lan, R.; Tao, S. Journal of Power Sources 2011, 196, 5021–5026 (DOI: 10.1016/j.jpowsour.2011.02.015).
  5. Guo, F.; Cheng, K.; Ye, K.; Wang, G.; Cao, D. Electrochimica Acta 2016, 199, 290–296 (DOI: 10.1016/j.electacta.2016.01.215).
  6. Helmenstine, A. M. What Is the Chemical Composition of Urine [online]; ThoughtCO. Jan. 21, 2018, https://www.thoughtco.com/the-chemical-composition-of-urine-603883 (accessed Feb. 10, 2018).

関連書籍

The following two tabs change content below.
やぶ

やぶ

学部と大学院の間にギャップイヤーをとり、PhD候補生の候補生としてアメリカで無機材料を研究しています。Chem-Station を見て育った学生として、このコミュニティをより盛り上げていきたいです。高専出身。

関連記事

  1. ファージディスプレイでシステイン修飾法の配列選択性を見いだす
  2. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  3. 文具に凝るといふことを化学者もしてみむとてするなり⑩:メクボール…
  4. バイエルスドルフという会社 ~NIVEA、8×4の生みの親~
  5. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~
  6. 【速報】2012年ノーベル化学賞発表!!「Gタンパク質共役受容体…
  7. iPhone/iPod Touchで使える化学アプリ-ケーション…
  8. 科学とは「世界中で共有できるワクワクの源」! 2018年度ロレア…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 結晶構造と色の変化、有機光デバイス開発の強力ツール
  2. クラブトリー触媒 Crabtree’s Catalyst
  3. 史上最強の塩基が合成される
  4. グリチルリチン酸 (glycyrrhizic acid)
  5. 阪大で2億7千万円超の研究費不正経理が発覚
  6. 有機合成テクニック集[ケムステ版]
  7. ミズロウ・エヴァンス転位 Mislow-Evans Rearrangement
  8. ムスカリン muscarine
  9. ロバート・コリュー R. J .P. Corriu
  10. 超微量紫外可視分光光度計に新型登場:NanoDrop One

関連商品

注目情報

注目情報

最新記事

勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

総合職であれば、本社以外の勤務や転勤を職務の一貫として、身近なものとして考えられる方は多いのではない…

決算短信~日本触媒と三洋化成の合併に関連して~

投資家でなければ関係ないと思われがちな決算短信ですが、実は企業のいろいろな情報が正直に書いてある書類…

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

Chem-Station Twitter

PAGE TOP