[スポンサーリンク]

化学者のつぶやき

ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル化

[スポンサーリンク]

α-ヒドロキシカルボン酸誘導体のα位アルキル化反応の開発に成功した。α-ヒドロキシカルボン酸誘導体がDMAP-ボリルラジカルで一電子還元される。続く炭素–酸素結合開裂に伴う、スピン中心移動(SCS)により生じたα-カルボニルラジカルがアルケンと反応する。

α-ヒドロキシカルボン酸のヒドロキシ基の変換

α-ヒドロキシカルボン酸は天然物に頻出する構造である。そのヒドロキシ基の変換により、様々なα-官能基化カルボニル化合物を合成できる。極性機構とラジカル機構があるが、ここではラジカル機構について述べる。例えば、炭素–酸素(C–O)結合を均等開裂すれば、α-カルボニルラジカルを生じ、様々な反応剤と反応できる。しかし、そのC–O結合の結合解離エネルギーは大きく、開裂は容易ではない。したがって、ヒドロキシ基を脱離容易な官能基(”活性基”, X)に変換し、炭素–活性基(C–X)結合を均等開裂させ、α-カルボニルラジカルを生成する手法が一般的であり、近年多くの脱酸素的官能基化が報告されている(図1A)[1]
一方で、本著者のWangらは最近、トリフルオロアセトアミドやトリフルオロ酢酸エステルの炭素–フッ素(C–F)結合の連続的なα位アルキル/水素化を開発した(図1B)[2]。強固なC–F結合の切断に成功した鍵に、スピン中心移動(Spin center shift: SCS)機構の利用がある。SCS機構ではまず、カルボニル基の一電子還元によりラジカル種を生成する。そのラジカル中間体から、フッ素アニオンの脱離とヘテロ原子Yからの電子供与により1,2-ラジカル移動(スピン中心移動)することでα-カルボニルラジカルとなる。これとアルケンや水素源を反応させることで、炭素–フッ素結合の官能基化が可能となった。
今回著者らは、この知見をもとに、直接に炭素–活性基(C–X)結合を均等開裂させない手法、つまり、SCS機構でα-ヒドロキシカルボン酸誘導体のC–O結合を切断し、α-カルボニルラジカルの生成を試みた(図1C)。その結果、弱い活性基(Z = Ac)でも、α-カルボニルラジカルの生成に成功し、未踏のα-ヒドロキシカルボン酸誘導体のアルキル化反応を開発した。

図1. (A) 炭素–酸素結合開裂の例 (B) 連続的α-炭素–フッ素結合の官能基化 (C) 本手法

 

“Dehydroxylative Alkylation of α-Hydroxy Carboxylic Acids Derivatives via a Spin-Center Shift”
Peng, T.-Y.; Xu, Z.-Y.; Zhang, F.-L.; Li, B.; Xu, W.-P.; Fu, Y.; Wang, Y.-F.
Angew. Chem., Int. Ed. 2022, Early View.
DOI: 10.1002/anie.202201329

論文著者の紹介

研究者:Feng-Lian Zhang
研究者の経歴:
2015 Ph.D., Nanyang Technological University, Singapore (Prof. S. Chiba)
2016–2019 Postdoc, University of Science and Technology of China, China (Prof. Y.-F. Wang)
2019– Research Assistant Professor, University of Science and Technology of China, China (Prof. Y.-F. Wang)
研究内容:ルイス塩基ホウ素ラジカルの新規反応性の解明

研究者:Yi-Feng Wang
研究者の経歴:
2003 B.S., Central China Normal University, China
2006 M.S., Nankai University, China (Prof. H. Yang)
2010 Ph.D., Nanyang Technological University, Singapore (Profs. K. Narasaka and S. Chiba)
2011–2015 Research Fellow, Nanyang Technological University, Singapore (Prof. S. Chiba)
2015– Professor, University of Science and Technology of China, China
研究内容:ルイス塩基ホウ素ラジカルの新規反応性の解明

研究者:Yao Fu
研究者の経歴:
2000 B.S., University of Science and Technology of China, China
2005 Ph.D., University of Science and Technology of China, China (Prof. G. Qingxiong)
2005–2010 Associate Professor, University of Science and Technology of China, China
2010– Professor, University of Science and Technology of China, China
研究内容:計算化学、遷移金属触媒を用いた有機合成、グリーンケミストリーにおける新規反応や触媒開発

論文の概要

4-ジメチルアミノピリジンボラン(DMAP-BH3)、1,2-ビス(tert-ブチルオキシ)ジアゼン(TBHN)、ベンゼンチオール(PhSH)存在下、アセトニトリル中、60 °Cでα-ヒドロキシカルボン酸誘導体(主にアミド、活性基はAcもしくはMs基)1に対し、アルケン2を作用させることで、アルキル化体3が得られる(図 2A)。本反応は乳酸から合成したアミドにも適用でき3aへと導いた。その他にコレステロール由来のアミド、マレイン酸由来のエステルもアルキル化により、それぞれ3b, 3cが得られた(Z=Ac)。α-ヒドロキシエステルの場合は、Z=Msとすることで、血管拡張薬cyclandelateのアルキル化も進行し3dを与えた。
反応機構はラジカルクロック実験やDFT計算により、次のように推定した。まず、DMAP-BH3とラジカル開始剤TBHNからDMAP-ボリルラジカルが生成し、1のカルボニルを一電子還元する。続くSCS機構により、α-カルボニルラジカル中間体を生じ、これがアルケン2と反応することで、アルキル化体3を与える。
本反応のDMAP-ボリルラジカルによる1のカルボニル基の一電子還元では、SOMO/LUMOエネルギーギャップが関与する(図2B)。アミド4とアルケン5を用いたα位アルキル化では、4の置換基R1、R2の電子求引性が強いほど、SOMO/LUMOエネルギーギャップは小さく、一電子還元が進行してSCS機構によりアルキル化体6を与える。なお、置換基R1をエステルにすると(電子求引性を高める)、よりSOMO/LUMOエネルギーギャップが小さくなり、OTs基やOMs基のみならず、OAc基の切断が可能になる(低収率ではあるがOH基も)。

図2. (A) 基質適用範囲(B) アミド4の置換基とSOMO/LUMOギャップの関係

以上著者らは、α-ヒドロキシカルボン酸のアルキル化を報告した。SCS機構を巧みに操ることで、さらなる不活性結合の官能基化が期待できる。

参考文献

  1. (a)Lutsker, E.; Reiser, O. Synthesis of Chiral Tetrahydrofurans and Pyrrolidines by Visible-Light-Mediated Deoxygenation. J. Org. Chem. 2017, 2017, 2130–2138. DOI: 10.1002/ejoc.201700014 (b) Rackl, D.; Kais, V.; Kreitmeier, P.; Reiser, O. Visible Light Photoredox-Catalyzed Deoxygenation of Alcohols. Beilstein J. Org. Chem. 2014, 10, 2157–2165. DOI: 10.3762/bjoc.10.223 (c) Cai, A.; Yan, W.; Liu, W. Aryl Radical Activation of C–O Bonds: Copper-Catalyzed Deoxygenative Difluoromethylation of Alcohols. J. Am. Chem. Soc. 2021, 143, 9952−9960. DOI: 10.1021/jacs.1c04254 (d) Dong, Z.; MacMillan, D. W. C. Metallaphotoredox-enabled Deoxygenative Arylation of Alcohols. Nature 2021, 598, 451−456. DOI: 10.1038/s41586-021-03920-6 (e) Gao, M.; Sun, D.; Gong, H. Ni-Catalyzed Reductive C–O Bond Arylation of Oxalates Derived from α-Hydroxy Esters with Aryl Halides. Org. Lett. 2019, 21, 1645–1648. DOI: 10.1021/acs.orglett.9b00174 (f) Monteith, J. J.; Rousseaux, S. A. L. Ni-Catalyzed C(sp3)–O Arylation of α-Hydroxy Esters. Org. Lett. 2021, 23, 9485–9489. DOI: 10.1021/acs.orglett.1c03674 (g) Ran, C.-K.; Niu, Y.-N.; Song, L.; Wei, M.-K.; Cao, Y.-F.; Luo, S.-P.; Yu, Y.-M.; Liao, L.-L.; Yu, D.-G. Visible-Light PhotoredoxCatalyzed Carboxylation of Activated C(sp3 )–O Bonds with CO2. ACS Catal. 2022, 12, 18–24. DOI: 10.1021/acscatal.1c04921
  2. Yu, Y. J.; Zhang, F. L.; Peng, T. Y.; Wang, C. L.; Cheng, J.; Chen, C.; Houk, K. N.; Wang, Y.-F. Sequential C–F Bond Functionalizations of Trifluoroacetamides and Acetates via Spin-center Shifts. Science 2021, 371, 1232– DOI: 10.1126/science.abg0781

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 「進化分子工学によってウイルス起源を再現する」ETH Zuric…
  2. C–H活性化反応ーChemical Times特集より
  3. 液晶の薬物キャリアとしての応用~体温付近で相転移する液晶高分子ミ…
  4. 結晶作りの2人の巨匠
  5. 高分子鎖デザインがもたらすポリマーサイエンスの再創造|オンライン…
  6. 東京理科大学みらい研究室にお邪魔してきました
  7. 有機合成化学協会誌2017年7月号:有機ヘテロ化合物・タンパク質…
  8. 【日産化学 25卒/Zoomウェビナー配信!】START you…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. UCLA研究員死亡事故・その後
  2. 炭素原子のまわりにベンゼン環をはためかせる
  3. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シングルセル解析
  4. 遠藤章 Akira Endo
  5. がん細胞を狙い撃ち 田澤富山医薬大教授ら温熱治療新装置 体内に「鉄」注入、電磁波で加熱
  6. 白金イオンを半導体ナノ結晶の内外に選択的に配置した触媒の合成
  7. MOF-5: MOF の火付け役であり MOF の代名詞
  8. ホウ素から糖に手渡される宅配便
  9. 分子マシンー2016年ノーベル化学賞より
  10. 陽電子放射断層撮影 Positron Emmision Tomography

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP