[スポンサーリンク]

化学者のつぶやき

トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成

[スポンサーリンク]

ククルビタン型トリテルペンoctanorcucurbitacin Bの全合成が初めて達成された。常法である半合成法から脱却した四環性テルペノイドの効率的な構築が本合成の特徴である。

ククルビタン型トリテルペン類の合成研究

ククルビタン類はトリテルペノイドの一種であり、抗腫瘍活性や抗炎症活性、抗HIV活性を示すことが知られる[1]。その構造は複雑であり、四環式骨格の縮環部(C9, C13, C14位)に3つの不斉四級炭素をもつ(図1A)。そのために不斉四級炭素を1つまたは2つ有するステロイドよりも合成難度が高い。また、同様の構造を有するラノスタン類は比較的平坦な多環構造を形成するのに対して、ククルビタン類はB環とC環がcis縮環しているためにその骨格はより立体的となる。
ククルビタン類の全合成はこれまで報告がなく、すべて半合成である。その手法として、天然物のククルビタン類の誘導体化の他、ラノスタン類からの生体模倣カチオン転位によるククルビタン類への変換法がある(図1B)[2]。その機構はラノスタン骨格を有する化合物のC9位にカルボカチオンを生成、C10位のC9位へのメチル基転位からはじまる、C5位からC10位へのヒドリド転位、C6位の脱プロトン化が提唱されている。しかし、この変換法は、原料となるラノスタン骨格をもつ天然物が入手困難であることが大きな課題であった[3]
今回、ダートマス大学のMicalizioらは、ラノスタン骨格を経由しない手法で、ククルビタン類であるoctanorcucurbitacin B(1)の不斉全合成に挑戦した。著者らによる1の逆合成解析を示す(図1C)。まず、2のA環とB環の修飾によって1が得られる。2は、4の酸化およびオレフィンを異性化した3に対する立体選択的なメチル基導入によって合成できると考えた。45の分子内溝呂木–ヘック反応、5は自身で開発したキラルエンイン6とTMSプロピンとの環化付加反応[4]による合成を計画した。つまり、短工程でククルビタン骨格の合成計画を立て、半合成からの脱却を図った。

図1. (A) ククルビタン類の構造、(B) ククルビタン類の半合成法、(C) octanorcucurbitacin B (1)の逆合成解析

 

“Asymmetric De Novo Synthesis of a Cucurbitane Triterpenoid: Total Synthesis of Octanorcucurbitacin B”
Bucknam, A. R.; Micalizio, G. C. J. Am. Chem. Soc. 2022, 144, 8493–8497.  DOI: 10.1021/jacs.2c03109

論文著者の紹介

研究者:Glenn C. Micalizio

研究者の経歴:

1992–1996 B.Sc. in Chemistry, Ramapo College of New Jersey, USA
1996–2001 Ph.D. in Chemistry, University of Michigan, USA (Prof. William R. Roush)
2001–2003 Postdoc, Harvard University, USA (Prof. Stuart L. Schreiber)
2003–2008 Assistant Professor, Yale University, USA
2008–2013 Associate Professor, The Scripps Research Institute, USA
2013–                            Professor, Dartmouth College, USA

研究内容:天然物合成、合成方法論の開発

論文の概要

主骨格構築法であるキラルエンイン6から5の機構を含む1の合成を図2に示す。まずTMSプロピンとTi(OiPr)4からチタンーアルキン錯体、6nBuLiからリチウムアルコキシドが生じる。次に、これらの環化付加反応によってチタノシクロペンタジエン10が位置選択的に生成する。続く分子内[4+2]環化反応、キレトロピー反応、TMS基の除去により、C13位の不斉四級炭素およびC環とD環が形成された5を与えた(2工程)。次に5の分子内溝呂木–ヘック反応によって4を合成した。立体選択的なB環とC環の縮環によってC9位の不斉四級炭素の構築が達成されており、6からわずか3工程でククルビタン類の基礎骨格を形成することに成功した。残る課題はC14位の不斉四級炭素の構築である。4のアルコールを酸化した後、オレフィンを異性化しB環とC環がcis縮環した3とした。3のケトンを立体選択的に還元し、続くシクロプロパン化により11を得た。さらに、11の酸化およびバーチ還元によってシクロプロパン環の位置選択的開裂が進行し、C14位の不斉四級炭素をもつ12へと導いた。最後に、12のA環とB環を6工程で修飾することで1を合成した。

図2. Octanorcucurbitacin B (1)の合成経路

参考文献

  1. (a) Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X. Cucurbitacins and Cucurbitane Glycosides: Structures and Biological Activities. Nat. Prod. Rep. 2005, 22, 386. DOI: 10.1039/B418841C (b) Chen, J.-C.; Zhang, G.-H.; Zhang, Z.-Q.; Qiu, M.-H.; Zheng, Y.-T.; Yang, L.-M.; Yu, K.-B. Octanorcucurbitane and Cucurbitane Triterpenoids from the Tubers of Hemsleya Endecaphylla with HIV-1 Inhibitory Activity. J. Nat. Prod. 2008, 71, 153–155. DOI: 10.1021/np0704396 (c) Alsayari, A.; Halaweish, F.; Gurusamy, N. The Role of Cucurbitacins in Combating Cancers: A Mechanistic Review. Phcog. Rev. 2018, 12, 157. DOI: 10.4103/phrev.phrev_17_18
  2. (a) Ramalhete, C.; Lopes, D.; Molnár, J.; Mulhovo, S.; Rosário, V. E.; Ferreira, M.-J. U. Karavilagenin C Derivatives as Antimalarials. Bioorganic & Medicinal Chemistry 2011, 19, 330–338. DOI: 1016/j.bmc.2010.11.015 (b) Shibuya, M.; Adachi, S.; Ebizuka, Y. Cucurbitadienol Synthase, the First Committed Enzyme for Cucurbitacin Biosynthesis, Is a Distinct Enzyme from Cycloartenol Synthase for Phytosterol Biosynthesis. Tetrahedron 2004, 60, 6995–7003. DOI: 10.1016/j.tet.2004.04.088
  3. (a) Edwards, O. E.; Paryzek, Z. Lanostane-to-Cucurbitane Transformation. Can. J. Chem. 1983, 61, 1973–1980. DOI: 10.1139/v83-341 (b) Edwards, O. E.; Kolt, R. J. Lanostane to Cucurbitane Transformations. Can. J. Chem. 1987, 65, 595–612. DOI: 10.1139/v87-104
  4. (a) Micalizio, G. C.; Mizoguchi, H. The Development of Alkoxide-Directed Metallacycle-Mediated Annulative Cross-Coupling Chemistry. Isr. J. Chem.2017, 57, 228−238. DOI: 10.1002/ijch.201600098 (b) Nicholson, J. M.; Millham, A. B.; Bucknam, A. R.; Markham, L. E.; Sailors, X. E.; Micalizio, G. C. A General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J. Org. Chem. 2022, 87, 3352–3362. DOI: 10.1021/acs.joc.1c02979

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. Reaxys Ph.D Prize2019ファイナリスト発表!
  2. 含フッ素遷移金属エノラート種の合成と応用
  3. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  4. ルイス酸添加で可視光レドックス触媒の機構をスイッチする
  5. ダイヤモンド構造と芳香族分子を結合させ新たな機能性分子を創製
  6. 2007年度ノーベル化学賞を予想!(1)
  7. 今こそ天然物化学☆ 天然物化学談話会2021オンライン特別企画
  8. 電気化学ことはじめ(2) 電位と電流密度

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Essential細胞生物学
  2. 第47回天然有機化合物討論会
  3. N-ヨードサッカリン:N-Iodosaccharin
  4. 韮山反射炉に行ってみた
  5. 日本の海底鉱物資源の開発状況と課題、事業展望【終了】
  6. 【8/25 20:00- 開催!】オンラインイベント「研究者と描くAI社会の未来設計」
  7. 硤合不斉自己触媒反応 Soai Asymmetric Autocatalysis
  8. 国際化学オリンピック2016でもメダルラッシュ!
  9. ヴィドマン・ストーマー シンノリン合成 Widman-Stoermer Cinnoline Synthesis
  10. キラルアニオン相間移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP