[スポンサーリンク]

化学者のつぶやき

トリテルペノイドの「トリ」!?octanorcucurbitacin Bの全合成

[スポンサーリンク]

ククルビタン型トリテルペンoctanorcucurbitacin Bの全合成が初めて達成された。常法である半合成法から脱却した四環性テルペノイドの効率的な構築が本合成の特徴である。

ククルビタン型トリテルペン類の合成研究

ククルビタン類はトリテルペノイドの一種であり、抗腫瘍活性や抗炎症活性、抗HIV活性を示すことが知られる[1]。その構造は複雑であり、四環式骨格の縮環部(C9, C13, C14位)に3つの不斉四級炭素をもつ(図1A)。そのために不斉四級炭素を1つまたは2つ有するステロイドよりも合成難度が高い。また、同様の構造を有するラノスタン類は比較的平坦な多環構造を形成するのに対して、ククルビタン類はB環とC環がcis縮環しているためにその骨格はより立体的となる。
ククルビタン類の全合成はこれまで報告がなく、すべて半合成である。その手法として、天然物のククルビタン類の誘導体化の他、ラノスタン類からの生体模倣カチオン転位によるククルビタン類への変換法がある(図1B)[2]。その機構はラノスタン骨格を有する化合物のC9位にカルボカチオンを生成、C10位のC9位へのメチル基転位からはじまる、C5位からC10位へのヒドリド転位、C6位の脱プロトン化が提唱されている。しかし、この変換法は、原料となるラノスタン骨格をもつ天然物が入手困難であることが大きな課題であった[3]
今回、ダートマス大学のMicalizioらは、ラノスタン骨格を経由しない手法で、ククルビタン類であるoctanorcucurbitacin B(1)の不斉全合成に挑戦した。著者らによる1の逆合成解析を示す(図1C)。まず、2のA環とB環の修飾によって1が得られる。2は、4の酸化およびオレフィンを異性化した3に対する立体選択的なメチル基導入によって合成できると考えた。45の分子内溝呂木–ヘック反応、5は自身で開発したキラルエンイン6とTMSプロピンとの環化付加反応[4]による合成を計画した。つまり、短工程でククルビタン骨格の合成計画を立て、半合成からの脱却を図った。

図1. (A) ククルビタン類の構造、(B) ククルビタン類の半合成法、(C) octanorcucurbitacin B (1)の逆合成解析

 

“Asymmetric De Novo Synthesis of a Cucurbitane Triterpenoid: Total Synthesis of Octanorcucurbitacin B”
Bucknam, A. R.; Micalizio, G. C. J. Am. Chem. Soc. 2022, 144, 8493–8497.  DOI: 10.1021/jacs.2c03109

論文著者の紹介

研究者:Glenn C. Micalizio

研究者の経歴:

1992–1996 B.Sc. in Chemistry, Ramapo College of New Jersey, USA
1996–2001 Ph.D. in Chemistry, University of Michigan, USA (Prof. William R. Roush)
2001–2003 Postdoc, Harvard University, USA (Prof. Stuart L. Schreiber)
2003–2008 Assistant Professor, Yale University, USA
2008–2013 Associate Professor, The Scripps Research Institute, USA
2013–                            Professor, Dartmouth College, USA

研究内容:天然物合成、合成方法論の開発

論文の概要

主骨格構築法であるキラルエンイン6から5の機構を含む1の合成を図2に示す。まずTMSプロピンとTi(OiPr)4からチタンーアルキン錯体、6nBuLiからリチウムアルコキシドが生じる。次に、これらの環化付加反応によってチタノシクロペンタジエン10が位置選択的に生成する。続く分子内[4+2]環化反応、キレトロピー反応、TMS基の除去により、C13位の不斉四級炭素およびC環とD環が形成された5を与えた(2工程)。次に5の分子内溝呂木–ヘック反応によって4を合成した。立体選択的なB環とC環の縮環によってC9位の不斉四級炭素の構築が達成されており、6からわずか3工程でククルビタン類の基礎骨格を形成することに成功した。残る課題はC14位の不斉四級炭素の構築である。4のアルコールを酸化した後、オレフィンを異性化しB環とC環がcis縮環した3とした。3のケトンを立体選択的に還元し、続くシクロプロパン化により11を得た。さらに、11の酸化およびバーチ還元によってシクロプロパン環の位置選択的開裂が進行し、C14位の不斉四級炭素をもつ12へと導いた。最後に、12のA環とB環を6工程で修飾することで1を合成した。

図2. Octanorcucurbitacin B (1)の合成経路

参考文献

  1. (a) Chen, J. C.; Chiu, M. H.; Nie, R. L.; Cordell, G. A.; Qiu, S. X. Cucurbitacins and Cucurbitane Glycosides: Structures and Biological Activities. Nat. Prod. Rep. 2005, 22, 386. DOI: 10.1039/B418841C (b) Chen, J.-C.; Zhang, G.-H.; Zhang, Z.-Q.; Qiu, M.-H.; Zheng, Y.-T.; Yang, L.-M.; Yu, K.-B. Octanorcucurbitane and Cucurbitane Triterpenoids from the Tubers of Hemsleya Endecaphylla with HIV-1 Inhibitory Activity. J. Nat. Prod. 2008, 71, 153–155. DOI: 10.1021/np0704396 (c) Alsayari, A.; Halaweish, F.; Gurusamy, N. The Role of Cucurbitacins in Combating Cancers: A Mechanistic Review. Phcog. Rev. 2018, 12, 157. DOI: 10.4103/phrev.phrev_17_18
  2. (a) Ramalhete, C.; Lopes, D.; Molnár, J.; Mulhovo, S.; Rosário, V. E.; Ferreira, M.-J. U. Karavilagenin C Derivatives as Antimalarials. Bioorganic & Medicinal Chemistry 2011, 19, 330–338. DOI: 1016/j.bmc.2010.11.015 (b) Shibuya, M.; Adachi, S.; Ebizuka, Y. Cucurbitadienol Synthase, the First Committed Enzyme for Cucurbitacin Biosynthesis, Is a Distinct Enzyme from Cycloartenol Synthase for Phytosterol Biosynthesis. Tetrahedron 2004, 60, 6995–7003. DOI: 10.1016/j.tet.2004.04.088
  3. (a) Edwards, O. E.; Paryzek, Z. Lanostane-to-Cucurbitane Transformation. Can. J. Chem. 1983, 61, 1973–1980. DOI: 10.1139/v83-341 (b) Edwards, O. E.; Kolt, R. J. Lanostane to Cucurbitane Transformations. Can. J. Chem. 1987, 65, 595–612. DOI: 10.1139/v87-104
  4. (a) Micalizio, G. C.; Mizoguchi, H. The Development of Alkoxide-Directed Metallacycle-Mediated Annulative Cross-Coupling Chemistry. Isr. J. Chem.2017, 57, 228−238. DOI: 10.1002/ijch.201600098 (b) Nicholson, J. M.; Millham, A. B.; Bucknam, A. R.; Markham, L. E.; Sailors, X. E.; Micalizio, G. C. A General Enantioselective and Stereochemically Divergent Four-Stage Approach to Fused Tetracyclic Terpenoid Systems. J. Org. Chem. 2022, 87, 3352–3362. DOI: 10.1021/acs.joc.1c02979
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. サイエンス・コミュニケーションをマスターする
  2. 10種類のスパチュラを試してみた
  3. 円偏光発光を切り替える色素ー暗号通信への応用に期待ー
  4. CO2が原料!?不活性アルケンのアリールカルボキシ化反応の開発
  5. マクロロタキサン~巨大なリングでロタキサンを作る~
  6. 第四回 ケムステVシンポ「持続可能社会をつくるバイオプラスチック…
  7. ポンコツ博士の海外奮闘録⑦〜博士,鍵反応を仕込む〜
  8. 水素ガス/酸素ガスで光特性を繰り返し変化させる分子

注目情報

ピックアップ記事

  1. 精密分子設計による高感度MRI分子プローブの開発 ~早期診断に向けたがん関連酵素活性の生体内リアルタイム計測~
  2. 顕微鏡の使い方ノート―はじめての観察からイメージングの応用まで (無敵のバイオテクニカルシリーズ)
  3. グレッグ・フー Gregory C. Fu
  4. デイヴィット・ベイカー David Baker
  5. ゼムラー・ウォルフ反応 Semmeler-Wolff Reaction
  6. 芳香族ボロン酸でCatellani反応
  7. 光化学と私たちの生活そして未来技術へ
  8. 世界の技術進歩を支える四国化成の「独創力」
  9. 第47回「目指すは究極の“物質使い”」前田和彦 准教授
  10. フェノールフタレイン ふぇのーるふたれいん phenolphthalein

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

日本プロセス化学会2024ウインターシンポジウム

有機合成化学を基盤に分析化学や化学工学なども好きな学生さん、プロセス化学を知る絶好の…

2024年ノーベル化学賞は、「タンパク質の計算による設計・構造予測」へ

2024年10月9日、スウェーデン王立科学アカデミーは、2024年のノーベル化学賞を発表しました。今…

デミス・ハサビス Demis Hassabis

デミス・ハサビス(Demis Hassabis 1976年7月27日 北ロンドン生まれ) はイギリス…

【書籍】化学における情報・AIの活用: 解析と合成を駆動する情報科学(CSJカレントレビュー: 50)

概要これまで化学は,解析と合成を両輪とし理論・実験を行き来しつつ発展し,さまざまな物質を提供…

有機合成化学協会誌2024年10月号:炭素-水素結合変換反応・脱芳香族的官能基化・ピクロトキサン型セスキテルペン・近赤外光反応制御・Benzimidazoline

有機合成化学協会が発行する有機合成化学協会誌、2024年10月号がオンライン公開されています。…

レジオネラ菌のはなし ~水回りにはご注意を~

Tshozoです。筆者が所属する組織の敷地に大きめの室外冷却器がありほぼ毎日かなりの音を立て…

Pdナノ粒子触媒による1,3-ジエン化合物の酸化的アミノ化反応の開発

第629回のスポットライトリサーチは、関西大学大学院 理工学研究科(触媒有機化学研究室)博士課程後期…

第4回鈴木章賞授賞式&第8回ICReDD国際シンポジウム開催のお知らせ

計算科学,情報科学,実験科学の3分野融合による新たな化学反応開発に興味のある方はぜひご参加ください!…

光と励起子が混ざった準粒子 ”励起子ポラリトン”

励起子とは半導体を励起すると、電子が価電子帯から伝導帯に移動する。価電子帯には電子が抜けた後の欠…

三員環内外に三連続不斉中心を構築 –NHCによる亜鉛エノール化ホモエノラートの精密制御–

第 628 回のスポットライトリサーチは、東北大学大学院薬学研究科 分子薬科学専…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP