[スポンサーリンク]

化学者のつぶやき

光照射による有機酸/塩基の発生法:②光塩基発生剤について

[スポンサーリンク]

【本記事は、糖化学ノックイン領域において実施している領域内総説抄録会の過去資料をブログ記事に転記し、一般向けに公開しているものです】

「光照射による有機酸/塩基の発生法」について、前回記事①からの続きです。

“Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations”
Zivic, N.; Kuroishi, P. K.; Dumur, F.; Gigmes, D.*; Dove, A. P.*; Sardon, H.* Angew. Chem. Int. Ed. 2019, 58, 10410. doi:10.1002/anie.201810118

【概要】 光照射に応答して任意のタイミングで系内に酸や塩基を生成する光酸(photoacid)・ 光塩基(photobase)は、精密な成型を必要とする重合反応に主に利用され、電子・光学・医用材料を作製する3D微細加工技術などに応用されている。 このような光重合技術はラジカル反応が主流だったが、この10年程で酸・塩基の化学も発展している。 それらに関する最近の総説を概観し、重合以外の反応への応用について可能性を考察する。

3. 光塩基発生剤(photobase generator (PBG))

1990年にPBGの概念が出始めてから、光解離性のカーバメートやO-アシルオキシムなど様々なものが開発されてきた。これらは架橋剤として利用されていたが、後に塩基触媒としても利用されるようになった。空気中で安定、金属と反応しない、などの特徴から、金属を含む基質にも利用でき、自動車や電子材料の塗装などに応用されている。PBGは光酸発生剤(PAG)に比べて開発が遅れており、また初期のPBGのほとんどが塩基性の低い第一級・第二級アミンを生成するもので効率が悪かったが、最近の 10 年程で状況はかなり改善され、アミジン・グアニジン・ホスファゼン・カルベンを生成するPBGが開発されている。

3. 1. 塩

1998年から2000年代前半にかけて様々な第四級アンモニウム塩が開発された。主に、発色団が連結されており、光照射によるC–N結合のホモリティック開裂を経てアミンを生成する。これらの化合物は第三級アミンを生成する PBG の最初の例である。しかし、有機溶媒への溶解度や熱安定性に問題がある。また、光分解性能がアミンの構造に依存するため、汎用性に欠ける。

これらの問題を解決するために、脱プロトン化を利用した方法が開発されている。 これにより ε-カプロラクトンの光開環重合が初めて達成された。 また、チオールクリック反応を利用して様々な重合反応に利用されている(RSC Adv. 2016, 6, 32098)。この手法は、アミン以外にもホスファゼンやカルベンに利用でき、 PBG の汎用性を拡張した。 BPh4は量子収率が低く、吸収波長が短いが、チオキサントンを増感剤にすると可視光領域を含む350 nm以上の光で活性化できる。

脱炭酸を利用したPBGも開発されており、これは発色団の設計が容易で光化学特性を調節しやすい特徴がある。

3. 2. カーバメート

アミンにカーバメート基を介して光解離性保護基(photolabile protecting group, PPG) が結合したPBGは、脱炭酸により第一級・第二級アミンを生成する。 これらは元々、光硬化性樹脂の架橋剤として利用されていたが、光照射に加えて加熱も必要だった。生成するアミンを触媒的に利用できれば必要な光・熱エネルギーをともに削減できるが、 第一級・第二級アミンでは塩基性が弱いことがその障害になっていた。これに対して、1,1,3,3-テトラメチルグアニジン(TMG)を生成するPBGが開発された。第一級・第二級アミンよりも高活性で、光パターン形成の時空間制御に適している。このPPGは365 nmで量子収率が高いが、可視光での活性化が現在の課題である。

3.3. その他

トランスo-クマリン酸を利用したPBGは気体(CO2)を副生しないため、泡や亀裂を防ぐことができる。また、カーバメートとカルボキシレート塩を組み合わせた二官能性PBGも開発されており、単一光子で2つの塩基を生成できるため、感光性物質に応用できる。また。塩基としてカルバニオンを生成するものもある。これはビラジカル性があり、ラジカル重合の開始剤にもなる。

以上のように、PAGとは対照的に、PBGの開発では非イオンよりもイオンが好まれる傾向にある。これは、単純な酸・塩基反応を利用しているため様々な塩基を導入しやすく、光化学特性は独立に調節できるためである。とはいえ、高性能な非イオンPBGも開発されつつある。

4. 結論・将来展望

近年、有機合成分野を含め光化学反応の発展は目覚ましい。1970 年代・1990年代からそれぞれ研究されてきたPAG・ PBGはこれらの化学にさらに新しい特徴を与えると考えられる。また既に述べた通り、PAG(イオンから非イオンに推移)とPBG(イオンが好まれる)にはそれぞれ異なる研究展開があったことも興味深い。

重合分野においては、 PAG・PBGの発展でラジカル重合とは異なる種類の重合反応に展開できた一方、光ラジカル開始剤に匹敵する性能はまだない。例えば、化学安定性・熱安定性の改善、可視光での性能向上には課題が残っている。また、反応機構を含めた深い理解も今後の高効率PAG・PBGの開発につながるだろう。

さらに、二光子吸収による重合反応を利用した3D作製技術は、100 nm以下のスケールで複雑加工を可能にするが、PAG・PBGではまだ例が少ない。二光子励起 PAG・PBG の開発は今後の重要課題である。

【前回記事①はこちら】

関連リンク

 

 

糖化学ノックイン

投稿者の記事一覧

2021年度科学研究費助成事業 学術変革領域研究(B)「糖化学ノックイン」の広報アカウントです。生体分子現象の一つ「糖タンパク質の膜動態」にフォーカスし、生命系を理解し制御するための新たな反応化学技術「ケミカルノックイン」の確立を目指しています。
領域ホームページ:https://glycan-chemical-knockin.com/

関連記事

  1. コンパクトで革新的な超純水製造システム「アリウム」
  2. Gaussian Input File データベース
  3. 2007年度ノーベル化学賞を予想!(1)
  4. 有機合成化学協会誌2021年10月号:フッ素化反応2010-20…
  5. 摩訶不思議なルイス酸・トリス(ペンタフルオロフェニル)ボラン
  6. 光反応性ジアジリンアミノ酸:Fmoc-Tdf-OH, H-Tdf…
  7. 【書籍】アリエナイ化学実験の世界へ―『Mad Science―炎…
  8. 非平衡な外部刺激応答材料を「自律化」する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 光で分子の結合状態を変えることに成功
  2. 三菱化学、来年3月にナイロン原料の外販事業から撤退=事業環境悪化で
  3. 交互に配列制御された高分子合成法の開発と機能開拓
  4. レア RARE 希少金属の知っておきたい16話
  5. 2007年度ノーベル化学賞を予想!(5)
  6. 2017年12月14日開催: 化学企業4社によるプレミアムセミナー
  7. 元素のふるさと図鑑
  8. プロリン ぷろりん proline
  9. 第15回光学活性シンポジウム
  10. 研究室クラウド設立のススメ(導入編)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年12月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP