[スポンサーリンク]

スポットライトリサーチ

可視光を捕集しながら分子の結合を活性化するハイブリッド型ロジウム触媒

[スポンサーリンク]

第525回のスポットライトリサーチは、東京工業大学 物質理工学院 応用化学系の 大内 誠也 (おおうち・せいや) さんと、同所属の 井上 智仁 (いのうえ・とものり) さんのお二人にお願いしました!

大内さん・井上さんのご所属である田中健研究室では、遷移金属触媒や光などの外部刺激によって実現可能となる新反応の開発や、それらを促進する機能性分子の開発に取り組まれています。例えば第 381 回のスポットライトリサーチでは、超選択的触媒作用を示すカチオン性ロジウム触媒の開発について取り上げました。また、2021年のケムステニュースでは同研究室の成果「光反応を触媒するロジウム錯体」についてもピックアップしています。今回の大内さん・井上さんらの研究成果は、その光反応触媒について、さらなる発展系を示した形となります。イリジウムやルテニウムなどの遷移金属に比べ、周期表上でそれらと隣り合わせに位置するロジウムは、光反応の触媒として利用された事例が非常に少なく、その性質については研究が進んでいませんでした。今回の研究では、可視光を利用可能なロジウム光触媒の開発に成功し、多様な新規反応を見出すことに成功しています。その成果は高く評価され、Nature Synthesis 誌に掲載されるとともに、東工大よりプレスリリースされました。

Design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts
Seiya Ouchi, Tomonori Inoue, Juntaro Nogami, Yuki Nagashima & Ken Tanaka 
Nature Synthesis (2023), DOI: 10.1038/s44160-023-00268-9.

Abstract

Transition metal photo-induced catalysts operating in a single catalytic cycle are preferable compared with binary catalytic systems comprising both transition metal and photoredox catalysts. Such single-catalyst systems perform the dual function of visible light absorption and chemical transformation. However, most visible-light-driven catalytic reactions proceed via radical mechanisms, limiting the reaction types to which the catalysts are applicable. Several non-radical catalytic reactions have been developed, but these reactions are substrate dependent owing to the low visible-light-harvesting ability of the catalysts. Here we report the design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts, spiro-fluorene-indenoindenyl (SFI)-Rh(I) complexes. The SFI-Rh(I) complexes with non-fused but π-extended ligands reduce substrate dependence owing to high visible-light-harvesting ability, and show high stability due to resistance against protonation. Thus, the SFI-Rh(I) catalysts extend the scope of typical Rh(I)-catalysed reactions, such as the C–H borylation of arenes and [2+2+2] cycloaddition of alkynes, to challenging substrates under blue light-emitting diode irradiation at room temperature.

東工大プレスリリース

それでは、今回もインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

(井上さん)

遷移金属触媒を用いた光反応により熱反応では困難な数々の分子変換反応が実現されています。多くの遷移金属触媒は化学結合の活性化もしくは光の捕集のどちらか一方の機能しか有していません。実際、様々な有機合成反応に用いられてきたシクロペンタジエニルロジウム (CpRh) 触媒群は光を捕集できません。そこで私達の研究室は以前に、修飾CpRh触媒と光増感剤を併用することで C(sp2)–H ホウ素化反応を報告しています。このような CpRh 触媒群をベースとしてπ共役系を大きく拡張すると可視光を吸収する触媒の創製が可能ですが、この手法を用いるとCp錯体自身は不安定化されてしまいます(図1a)。

そこで本研究では Cp 配位子にスピロ中心を導入し、π共役系を増加したスピロフルオレンインデノインデニル (SFI) 配位子を設計することで「化学結合を活性化」し「光を捕集」可能なSFI–Rh触媒を開発しました。私達はこの SFI–Rh 触媒が直接青色光を捕集し、2つの可視光駆動型反応 (アレーン類のC(sp2)–Hホウ素化反応、嵩高いジインとアルキンの分子間 [2+2+2]付加環化反応) を触媒するハイブリッド触媒であることを明らかにしています (図1b)。

図1

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

(大内さん)
実は金触媒の反応に一番時間をかけていました。M1 で環化反応を見つけてアプリケーションに試行錯誤している中、錯体が取れたのが M2 の春か夏ごろでした。そのあとはとにかく忙しかったのを覚えています。思えば、錯体の生成を示すメチレンピークは学生最後の春休みの消失を示していたのかもしれません…。とはいえ、本研究は田中健研究室の金触媒反応と修飾 Cp ロジウム錯体、C-H 活性化反応や [2+2+2]反応、そして永島先生の光反応と計算科学の知見をすべて詰め込むことができた研究だと思っています。そのようなテーマに携われたことは、個人的にとても思い入れがあります。

(井上さん)
私は本研究で [2+2+2]付加環化反応の開発を行い、その基質デザインを工夫しました。両末端にアリール基を有する非常に嵩高い内部アルキンを用いた[2+2+2]付加環化反応は過酷な反応条件を必要とするほど難易度の高い反応です。そこで私はSFI–Rh 触媒と「光」を組み合わせた反応設計によりブレイクスルーが可能ではないかと考え、手当たりしだいに色んな基質を試しました。SFI–Rh 触媒の構造、さらに想定反応機構にマッチした基質設計が必要と考え、試行錯誤の末に両末端にアリール基を有するビフェニル架橋ジインにたどり着くことができました。

Rh」という遷移金属元素の特徴を活かした可視光駆動型反応を報告できたことに関して思い入れがある論文となりました。私は以前所属していた研究室で Pd 触媒を用いた可視光駆動型反応の開発を行っていましたが、本研究では全く異なる反応性を示す Rh 触媒を用いた反応開発を報告できました。遷移金属元素ごとの反応性を深く理解した上で適切な配位子、基質を選択することが新たな分子変換反応を開発する鍵となることを改めて学ぶことができました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

(大内さん)
金触媒の環化反応の研究から、あっという間に錯体合成やC-H活性化反応、[2+2+2]反応、そして光反応が関わる研究へと展開していったことについていくのは大変でした。ただ、そんな中なんとかこの研究を進めることができたのは、私がとても恵まれた環境にいたからだと改めて感じています。田中健研究室ではこれまで様々ロジウム錯体触媒とその反応の知見が積み重ねられてきました。また、先輩や同期、ひいては後輩もその最先端を探求する優秀な学生のみなさんであり、他愛のない内容であっても気軽に質問できる関係だったと思います。そして修士課程に進学する際には、永島先生に光反応と計算科学という新たな知見を与えていただきました。それに加え、中途半端な形で研究テーマを残し卒業する形となってしまった私に代わって、本研究を完成させていただいた井上さんの存在も無くてはならないものでした。田中健研究室の歴史と当時の私の周り方々のご協力無くしてこの研究の進展はなかったと強く感じます。

(井上さん)

C(sp2)–H ホウ素化反応の実験的な反応機構解析に非常に苦労しました。ホウ素化反応の中間体であるRh–ジボリル錯体中間体の分光化学特性を明らかにするためあらゆる実験を行ったのですが、全くジボリル錯体を検出することができませんでした。そこで「中間体を捕捉できない理由を探る」という別の角度から研究を進めることとしました。その一環として反応速度実験を行った際、induction period が観測されました。これと ESI–MS 測定結果を手がかりとして原料錯体からシクロオクタジエン (cod) 配位子がホウ素化されることによる解離が非常に遅いことが示唆されました(図2)。そのため真の活性種の生成には非常に長い時間が必要で、検出することは困難という結論を出すことができました。これら一連の反応機構解析を行う過程でSFI–Rh (cod) 錯体の隠れた欠点のようなものが徐々に明らかになり、まだまだ改良の余地が十分にあるように感じました。

図2

Q4. 将来は化学とどう関わっていきたいですか?

(大内さん)
現在は企業で研究を行う立場となりました。幸いなことに、今も新しい化学を追い求めるような研究に従事しており、学生時代に培った力を活かすことができていると感じています。今後も、アイデアがあるならとにかくやってみるという気持ちを忘れずに研究を続けていきたいです。

(井上さん)

将来は「有機合成化学」、「光化学」を軸とし、新たな分野へ積極的に挑戦することで融合的な研究を行えたらと思っています。これらの研究を通して、人々の生活をより便利に、快適にしていけたらと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします!

(大内さん)
この研究はとりあえずやってみようの連続で進んでいきました。金触媒反応を試してみよう、錯体を作ってみよう、光反応をやってみようという自由な雰囲気が新たな発見を生んだのだと思います。社会人になった今、それがいかに貴重な体験であったかを実感していますので、その学生の時間を目一杯楽しめるといいと思います。

【研究者の略歴】
名前: 大内 誠也
所属: 東京工業大学物質理工学院 応用化学系 応用化学コース 田中健研究室 2022年卒業(修士)
研究テーマ: 遷移金属錯体を用いたアルキンの求電子的活性化を起点とするスピロ環構築反応の開発と可視光駆動型触媒の創製


名前: 井上 智仁
所属: 東京工業大学物質理工学院 応用化学系 田中 (健) 研究室 博士後期課程 2 年
研究テーマ: 非ラジカル型光反応を促進する新規スピロ型シクロペンタジエニルロジウム(I)触媒の開発
略歴
2022年3月 東京工業大学理学院化学系修士課程修了 (岩澤伸治 教授)
2022年 4月〜 東京工業大学物質理工学院応用化学系 田中(健)研究室

大内さん、井上さん、インタビューにご協力いただき、誠にありがとうございました!
それでは、次回のスポットライトリサーチもお楽しみに!

田中健研究室のケムステ関連記事

東工大発、光を操るイミド化合物/光で創られるロジウムアート錯体
300分の1を狙い撃つ~カチオン性ロジウム触媒による高選択的[2+2+2]付加環化反応の開発

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 環状ビナフチルオリゴマーの大きさが円偏光の向きを変える
  2. 荷電処理が一切不要な振動発電素子を創る~有機EL材料の新しい展開…
  3. キノコから見いだされた新規生物活性物質「ヒトヨポディンA」
  4. SPring-8って何?(初級編)
  5. ルドルフ・クラウジウスのこと② エントロピー150周年を祝って
  6. パラジウム触媒の力で二酸化炭素を固定する
  7. 出発原料から学ぶ「Design and Strategy in …
  8. 韓国チームがiPS細胞の作製効率高める化合物を発見

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 文献検索サイトをもっと便利に:X-MOLをレビュー
  2. 表裏二面性をもつ「ヤヌス型分子」の合成
  3. 化学者のためのエレクトロニクス講座~電解ニッケルめっき編~
  4. 夏:今年もスズメバチ防護服の製造ピーク
  5. iBooksで有機合成化学を学ぶ:The Portable Chemist’s Consultant
  6. アントニオ・M・エチャヴァレン Antonio M. Echavarren
  7. O-アシルイソペプチド法 O-acylisopeptide Method
  8. 標準物質ーChemical Times特集より
  9. エーザイ、抗てんかん剤「イノベロン」、ドイツなどで発売を開始
  10. 高知和夫 J. K. Kochi

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

「ハーバー・ボッシュ法を超えるアンモニア合成法への挑戦」を聴講してみた

bergです。この度は2023年9月8日(金)に慶応義塾大学 矢上キャンパスにて開催された西林教授の…

(+)-Pleiocarpamineの全合成と新規酸化的カップリング反応を基盤とした(+)-voacalgine Aおよび(+)-bipleiophyllineの全合成

第564回のスポットライトリサーチは、東北大学大学院薬学研究科分子薬科学専攻・医薬製造化学分野(徳山…

ResearchGateに対するACSとElsevierによる訴訟で和解が成立

2023年9月15日、米国化学会(ACS)とElsevier社がResearchGateに対して起こ…

マテリアルズ・インフォマティクスの基礎知識とよくある誤解

開催日:2023/10/04 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

理研、放射性同位体アスタチンの大量製造法を開発

理化学研究所 仁科加速器科学研究センター 核化学研究開発室、金属技研株式会社 技術開発本部 エン…

マイクロ波プロセスを知る・話す・考える ー新たな展望と可能性を探るパネルディスカッションー

<内容>参加いただくみなさまとご一緒にマイクロ波プロセスの新たな展望と可能性について探る、パ…

SFTSのはなし ~マダニとその最新情報 後編~

注意1:この記事は人によってはやや苦手と思われる画像を載せております ご注意ください注意2:厚生…

様々な化学分野におけるAIの活用

ENEOS株式会社と株式会社Preferred Networks(PFN)は、2023年1月に石油精…

第8回 学生のためのセミナー(企業の若手研究者との交流会)

有機合成化学協会が学生会員の皆さんに贈る,交流の場有機化学を武器に活躍する,本当の若手研究者を知ろう…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP