[スポンサーリンク]

スポットライトリサーチ

鉄系超伝導体の臨界温度が4倍に上昇

[スポンサーリンク]

第31回のスポットライトリサーチは、東京工業大学 物質理工学院(細野・神谷・平松研究室)博士課程1年の半沢幸太 さんにお願いしました。

半沢さんの所属される細野研究室は、無機材料化学分野で画期的成果を上げ続ける世界トップラボの一つです(こちらのケムステ過去記事もご覧ください)。今回のトピックでもある「鉄系超伝導体」もその一つ。2008年に発表された論文Science誌の「ブレークスルー・オブ・ザ・イヤー」を飾るなど、世界的に極めて高く評価されています。その後も継続的に研究は続けられ、半沢さんを筆頭著者とする論文が、先日プレスリリースとともに公表されました。

”Electric field-induced superconducting transition of insulating FeSe thin film at 35 K”
Hanzawa, K.; Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H.
Proc. Natl. Acad. Sci. USA 2016, 113, 3986. DOI: 10.1073/pnas.1520810113

 

現場で直接指導されている平松秀典 准教授は、半沢さんをこう評しておられます。

半沢君は、卓越したプロセス技術と研究に対する真摯な姿勢を併せ持つ気鋭の若手です。今回PNASに掲載された成果も、彼が中心となって、寝食を忘れるほどこの研究テーマに打ち込んだから得られたものです。今後も一層の飛躍が期待できると確信しております。

実用化に向けて着々と歩みを続ける分野ですが、いつものように現場のリアリティをご堪能いただければと思います。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

2008年に当研究グループが発見した鉄系超伝導体(2008年JACS [1])をはじめとする高温超伝導体は、超伝導体となる前の母相に価数の異なる元素を置換し、伝導キャリアを添加すると超伝導相へ転移します。本研究では、母相として絶縁性FeSe薄膜を選択しました(FeSeは塊のバルクでは超伝導臨界温度(Tc)が8 Kの超伝導体ですが、ナノメートルオーダーの非常に薄い薄膜では絶縁体的特性を示します)。その理由は、鉄系超伝導体よりも高いTcを示す銅酸化物高温超伝導体の母相と特徴が類似しているからです。そして、キャリア添加手法としては、高濃度キャリア添加が元素置換せずに実現可能な電気二重層トランジスタ構造(図1左)を用いました。その結果、正のゲート電圧を印加することで最大35 Kの高Tc 超伝導転移(バルクの8 Kの約4倍)の観察に成功しました(図1右)。

sr_K_Hanzawa_1

図1: 本研究で作製した電気二重層トランジスタの概略図(左)と電気二重層トランジスタ構造を使って、ゲート電圧を印加したときのFeSe薄膜チャネルの電気抵抗の温度依存性(右)。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

研究を始めた当初は、高品質FeSe薄膜の作製に苦労しましたが、最も工夫したところは電気二重層トランジスタを作製するプロセスです。先輩の片瀬さん(2014年PNASの筆頭著者で、現 北大電子研 助教)や、本論文の共著者でもある佐藤さん(2016年3月博士課程修了, 現ゼネラル・エレクトリック)に習い、初めは大気中でデバイスを作製していました。しかし、ゲート電圧を印加しても電気抵抗の変調が全く観測されませんでした。そこですぐに諦めず、薄膜表面の状態が悪いのでないかと考えて、デバイス作製プロセスを全てArもしくは真空雰囲気で、試料を大気暴露することなく行ってみました(図2)。普段から薄膜表面を原子間力顕微鏡で観察していて、表面が大気暴露に弱いことに気づいており、もしかしたらそれが原因でデバイスが動作しないのでは?と考えたからです。この独自のプロセス開発がキーとなって、高いTcの超伝導転移を観測できました。

sr_K_Hanzawa_2

図2: 電気二重層トランジスタ作製プロセスの概要。図中の用語:MBE(分子線エピタキシー)、PLD(パルスレーザー堆積法)、GB(グローブボックス, 酸素濃度=1ppm以下、露点=約マイナス100°C)、L.L.(準備室)。

 

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

薄膜表面やゲート絶縁体として用いているイオン液体は周りの環境による変化や経時変化が激しく、実験バッチごとに同じ状態を実現することが困難でした。 そこで、先輩の佐藤さんや先生方と議論を重ね、こういった問題を薄膜表面に関しては図2のプロセスを開発することによって、イオン液体に関しては保管方法からデバイスに滴下するプロセスまで全てを常に同じ状態・動作で行えるよう徹底した管理を行うことで解決しました。

 

Q4. 将来は化学とどう関わっていきたいですか?

実際の研究は頭の中や机の上だけで出来るものではなく、手を動かす泥臭い仕事も重要だと思っています。私はこれまで農工大工学部時代の恩師である内藤方夫先生、東工大に進学してからは主に平松先生に徹底的に真空機器に関する知識を叩き込まれました。今ではそれが私の一番の武器になっています。そして、そういう専門知識を武器として、必死でとった実験データをどう解釈するか、どう次につなげていくのか、というのは研究者の知識、経験、好みに依存していると考えています。今回は、超伝導のみを考えていましたが、もっと知識があって、違う観点から見たら面白いことが内在しているかも知れないとも思っています。従って、現在指導して頂いている細野先生、神谷先生や平松先生のように化学・物理といった分野の垣根に縛られることなく、幅広い分野の知識と視野を持って、様々な分野の研究に関わっていきたいと思っています。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします。

今回の成果は御指導頂いた細野先生、神谷先生、平松先生と研究室の方々の御助力のおかげです。深く感謝いたします。

この研究の成果が出始めた頃は、実はあまり大した結果ではないと自分では勝手に思っていました。しかし、いろいろな人と議論したり、文献を調べたりしているうちに、けっこういいのでは?と思い直すようになりました。言いたいことは、普段から自分の研究テーマについて、もっといろいろな視点から考えておくことがとても大事だと実感したということです。

最後に、新年度が始まり研究室に新入生が来る頃だと思います。皆さんは研究をしに大学に来ているので仲良くする必要はないと思いますが、喧嘩はしないようにしましょう。

 

関連リンク

研究者の略歴

sr_K_Hanzawa_3半沢 幸太(はんざわ こうた)

2014年3月 東京農工大学 工学部 卒業

2016年3月 東京工業大学 材料物理科学専攻 修士課程修了

2016年4月 東京工業大学 物質理工学院 材料系 博士課程(現在に至る)

研究テーマ:薄膜化を駆使した新機能性材料の探索

 

 

 

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. デスソース
  2. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  3. ビニグロールの全合成
  4. 「新規高活性アルコール酸化触媒 nor-AZADOの有用性」 第…
  5. 化学者も参戦!?急成長ワクチン業界
  6. 「重曹でお掃除」の化学(その1)
  7. 専門用語豊富なシソーラス付き辞書!JAICI Science D…
  8. 自動車排ガス浄化触媒って何?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2022年ノーベル化学賞ケムステ予想当選者発表!
  2. ポンコツ博士の海外奮闘録⑤ 〜博士,アメ飯を食す。バーガー編〜
  3. 結晶構造と色の変化、有機光デバイス開発の強力ツール
  4. ガブリエルアミン合成 Gabriel Amine Synthesis
  5. 危険物に関する法令:点検・設備・保安距離
  6. 第11回 有機エレクトロニクス、分子からデバイスまで – John Anthony教授
  7. 李昂 Ang Li
  8. カンプス キノリン合成 Camps Quinoline Synthesis
  9. アレルギー体に抑制力:岐阜薬科大学長ら発見
  10. 持続可能性社会を拓くバイオミメティクス

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

実験条件検討・最適化特化サービス miHubのメジャーアップデートのご紹介 -実験点検討と試行錯誤プラットフォーム-

開催日:2023/12/13 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP