[スポンサーリンク]

ケムステニュース

積水化学、高容量電池の火炎防ぐ樹脂繊維複合材を開発

[スポンサーリンク]

  積水化学工業株式会社の高機能プラスチックスカンパニーは、独自の高難燃樹脂(塩素化塩ビ)と繊維強化複合技術の活用により、高容量リチウムイオン電池の激烈な発火に耐える「難燃軽量シート」を開発しました。今後は、パートナーと共に試験販売に向けて開発を加速していきます。(引用:積水化学プレスリリース3月31日)

リチウムイオン電池は、現在の2次電池の主流として様々な電子機器に使われており、電気自動車においてもリチウムイオン電池が多く搭載されています。しかしながらリチウムイオン電池にはリチウムが電極としてに用いられており、何らかの原因で電池がダメージを受け取ると自然発火して火災に至る可能性があります。

電気自動車においても電池による火災は深刻で、事故による自然発火の危険に加えて、完全消火に手間と時間がかかることがわかっています。実際に2022年2月の自動車運搬船FELICITY ACE号の火災では、電気自動車のリチウムイオン電池が燃えていて消火を困難にしたとの情報もあります。このようにリチウムイオン電池においては高性能化だけでなく、安全性を高めることもニーズが拡大する中で求められています。

このリチウムイオン電池の安全性に対しては、無機鉱物含有シートや無機多孔質シートを使うことがすでに提案されていますが、重量が増えてしまったり、シートから無機の粒子が脱落したり、成形時の問題があると言われています。

そこで積水化学では、この問題に対して新たに樹脂繊維複合材料を開発しました。実際に開発した製品はガラスマット塩素化ポリ塩化ビニルの複合材料で、電池パックカバーとして高い遮炎性と断熱性を持ち、そして軽量であることが特徴です。

実際に耐久試験を行ったところ、トーチバーナーの炎を7分当てても材料の表面状態は変形もなく穿孔もありませんでした。

また、電池パックを試作しセルを意図的に熱暴走させました。アルミの板の場合、セルが発火して2秒で火炎が噴き出ててきましたが、開発品では、火炎が噴き出ることもなく高い遮炎性が確認されました。

塩素化ポリ塩化ビニルの樹脂は溶融状態でも粘度が高く、高比率な繊維含有の複合材を作るには技術的な障壁がありましたが積水化学独自の技術で高比率繊維含有での複合化を可能にしました。

この材料に関する詳細な情報は公開されておらず複合材の詳しい製法は分かりませんが、積水化学からは、周辺技術の特許がいくつか出願されており、複合材以外にも塩素化塩化ビニル系樹脂自体の製法について開発が進められているようです。多くの特許において重合度や付加塩素化量に加えて、パルスNMRを用いて1Hのスピン-スピン緩和の自由誘導減衰曲線を測定し、その緩和時間で発明の範囲を設定しています。

具体的に特許出願2022-46776では、自由誘導減衰曲線を波形分離によってA:分子運動性が低く硬い成分、C:分子運動性が高く柔らかい成分、B:AとCの中間の成分の3成分に分け、これらの比率によって成形体の形状や強度に違いが出ることが示されています。塩素化ポリ塩化ビニル以外にも様々な樹脂についてバッテリーを保護する発明に関連した特許が多数出願(例えば2020-147734)されており、積水化学としては力を入れて開発に取り組んでいることが推測できます。

積水化学としてはこの複合材料に関して自動車向けの開発を進めていますが、将来的には住宅や航空機、発電所など様々な用途への展開を考えているようです。

簡単にプレスリリースの内容を紹介しましたが、電気自動車の普及が進む中で問題となる課題に対応する興味深い技術だと思いました。リチウムイオン電池より安全性が高い全固体電池の開発が進んでいますが、すぐに普及するとは考えにくく、当面はリチウムイオン電池が広く使われると予想されます。交通事故を防ぐ衝突回避や自動運転技術も世間では採用されていますが事故がゼロになることはなく、また事故以外の要因で電池が破損することはあるため、安全性を高める素材の開発は需要が高いと思います。この素材が広く採用され、バッテリーの安全性が高まることを期待します。

関連書籍

[amazonjs asin=”4781314821″ locale=”JP” title=”リチウムイオン電池の高安全・評価技術の最前線《普及版》 (エレクトロニクスシリーズ)”] [amazonjs asin=”4526079898″ locale=”JP” title=”リチウムイオン二次電池の性能評価-長く安全に使うための基礎知識-“]

関連リンクとリチウムイオン電池に関するケムステ過去記事

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 私立武蔵高 の川崎さんが「銀」 国際化学オリンピック
  2. 高純度化学研究所が実物周期標本を発売開始
  3. 特許庁「グリーン早期審査・早期審理」の試行開始
  4. 書籍「Topics in Current Chemistry」が…
  5. 【インドCLIP】製薬3社 抗エイズ薬後発品で米から認可
  6. 吸入ステロイド薬「フルタイド」の調査結果を発表
  7. バイエル薬品、アスピリンをモチーフにしたTシャツをユニクロで発売…
  8. 芝哲夫氏死去(大阪大名誉教授・有機化学)

注目情報

ピックアップ記事

  1. 第61回―「デンドリマーの化学」Donald Tomalia教授
  2. 複雑な化合物を効率よく生成 名大チーム開発
  3. 最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功
  4. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  5. チアミン (thiamin)
  6. 光触媒で新型肺炎を防止  ノリタケが実証
  7. 第56回「複合ナノ材料の新機能を時間分解分光で拓く」小林洋一 准教授
  8. 反芳香族性を有する拡張型フタロシアニン
  9. コルチスタチン /Cortistatin
  10. よう化サマリウム(II):Samarium(II) Iodide

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その1

Tshozoです。今回はかなり限定した疾患とそれに対するお薬の開発の中身をまとめておこうと思いま…

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP