[スポンサーリンク]

化学者のつぶやき

リンと窒素だけから成る芳香環

[スポンサーリンク]

1825年にファラデーがベンゼンを発見し、その後、1865年にケクレがその6員環構造を提唱してから今年で150年になります[1]

様々な環サイズ

今では、このベンゼンに代表される芳香族化合物は有機化学に欠かせない基礎骨格として知られていますが、芳香環の種類は6員環だけではありません。4及び5員環骨格を持つアニオン性化合物の例として、シクロブタジエンジアニオン種 I(6π)やシクロペンタジエニド II(6π)が、また3及び7員環骨格を持つカチオン性化合物の例としては、シクロプロペニルカチオン種 III(2π)やトロピリウムカチオン IV(6π)等が知られています(下図)[2]
rk20150602-fig 1
一方、骨格に炭素を含まないこれらの等電子化合物も報告されています。
例えば、無機ベンゼンと呼ばれるホウ素窒素原子で6員環を構成する化合物 ボラジン Vは、1926年にStockらによって発見されています[3]。ところが、ベンゼンとよく似た構造をしているにも関わらず、ボラジンはほとんど芳香族性を示さないと推測されています[4]。交互に配置されたホウ素と窒素の電気陰性度の差が、π電子の非局在化に影響を与えているのでしょう。

5員環状の無機芳香族化合物の例としては、理論計算によってN5アニオンVIなるものが提唱されているようですが、気相中でイオンとして、マススペクトルで検知されたことしかありません。そのリン類縁体であるP5アニオン種VIIは1987年から1988年にかけて白リン(P4)から合成されていて、溶液中室温下では、1週間から10日ほど安定に存在できることがわかっています[5]。こーゆー不飽和結合を含む化合物群において、高周期類縁体の方が安定ってなんだか不思議な気もしますね。N5アニオンは、分解する過程でN2の生成を伴うのかもしれません。
rk20150602-fig 2

では、窒素とリン、両方を混ぜたP&Nアニオン群VIIIは安定なのでしょうか?

 

P2N3

ごく最近、MITのCumminsらによって、窒素原子三つとリン原子二つのみからなる5員環アニオン種が合成されたので紹介したいと思います。

Alexandra Velian, Christopher Cummins, Science 2015, 348, 1001-1004, DOI: 10.1126/science.aab0204

2014年、著者らはP2ユニットを二つのアントラセンに付加した化合物 1を合成、報告しています[6]。この化合物、P2ユニットを他の基質にトランスファーすることができます。そこで今回著者らは、P2ユニットをアジド[N3]と反応させるアプローチを検討しました。形式的には、無機バージョンのクリック反応ですね。

1と当量のNa(kyriptofix-221)N3の混合物をTHF中、70℃で2時間加熱した結果、P2N3ユニットを対アニオンとする化合物 2を収率22%で得ることに成功しています。
rk20150602-fig 3
X線構造解析によって決定した分子構造を見てみると(下図*原著論文より)、5員環はC2v対称に近い平面構造であり、P-N及びP-P結合はいずれも単結合と二重結合の中間の値を示しています。また各種理論計算によって、π電子が非局在化していること、そして2が芳香族性を示すことを裏付けています。
rk20150602-xray

いくつか描くことができる共鳴構造 2a-cのうち、リンに凛々と隣接した窒素上に負電荷を置く2a(2a‘)の寄与が大きいと考えられ、実際に、炭化水素溶媒中では、その窒素と対カチオン間の相互作用が強くなることを、NMRの対称性から評価しています。
rk20150602-fig 4

 

 

計算によると、それぞれの共鳴構造の寄与は2a(18.4%)、2a’(18.4%)、2b(10.3%)、2c(12.7%)、2c’(12.7%)だそうです。こんな細かく見積もれるもんなんですね。でも合計が72.5%なので、他の電子状態の寄与もかなりあるということなのでしょう。最後に著者らは、芳香族性の強さが化合物 2の安定化に大きく貢献していると結論付けていてます。純粋な無機化合物においても、芳香族性というコンセプトが化合物の性質としてきっちり現れる ということを実験的に示している重要な成果だと思います。
種類や合成例の数からすると、純粋な炭素の系(有機)と比べ、無機芳香族化合物群の化学は、まだまだ未開拓な領域と言ってもいいでしょう。特に上述した化合物 2のように、複数の異なる元素を骨格に持つ場合、置換基の効果を利用するまでもなく、骨格原子そのものの性質によってπ電子に偏りを持たせることができます。このような特徴をうまく利用すると、炭素の系では出せない化学的性質を引き出すこともできそうですね[7]

 

参考文献

  1. (a) A. J. Rocke, Angew. Chem. Int. Ed. 2015, 54, 46-50. DOI: 10.1002/anie.201408034 (b) M. Francl, Nat. Chem. 2015, 7, 6-7. DOI:10.1038/nchem.2136
  2. (a) P. v. R. Schleyer, Chem. Rev. 2001, 101, 1115–1118. DOI: 10.1021/cr0103221 (b) M. Randic, J. Am. Chem. Soc. 1977, 99 , 444–450. DOI: 10.1021/ja00444a022 (c) D. Lloyd, J. Chem. Inf. Comput. Sci., 1996, 36, 442–447. DOI: 10.1021/ci950158g
  3. A. Stock, B. E. Pohland, Ber. Dtsch. Chem. Ges. A/B, 1926, 59, 2215-2223. DOI: 10.1002/cber.19260590907
  4.  A. K. Phukan, A. K. Guha, B. Silvi, Dalton Trans. 2010, 39, 4126-4137. DOI: 10.1039/B920161K
  5. M. Baudler, S. Akpapoglou, D. Ouzounis, F. Wasgestian, B. Meinigke, H. Budzikiewicz, H. Münster, Angew. Chem. Int. Ed. 1988, 27, 280-281. DOI: 10.1002/anie.198802801
  6.  A. Velian, M. Nava, M. Temprado, Y. Zhou, R. W. Field, C. C. Cummins, J. Am. Chem. Soc.  2014, 136, 13586-13589. DOI:10.1021/ja507922x
  7.  (a) T. Nakamura, K, Suzuki, M. Yamashita, J. Am. Chem. Soc.  2014, 136, 9276–9279. DOI:10.1021/ja504771d (b) T. Nakamura, K, Suzuki, M. Yamashita, Organometallics  2015, 34, 1806–1808. DOI:10.1021/acs.organomet.5b00310

 

関連書籍

関連記事

  1. 「オプトジェネティクス」はいかにして開発されたか
  2. 果たして作ったモデルはどのくらいよいのだろうか【化学徒の機械学習…
  3. 「鍛えて成長する材料」:力で共有結合を切断するとどうなる?そして…
  4. マテリアルズ・インフォマティクスのためのSaaS miHub活用…
  5. 【PR】Twitter、はじめました
  6. 分子びっくり箱
  7. 生物のデザインに学ぶ-未来をひらくバイオミメティクス-に行ってき…
  8. 「非晶質ニッケルナノ粒子」のユニークな触媒特性

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポット形成
  2. アロタケタールの全合成
  3. ポロノフスキー開裂 Polonovski Fragmentation
  4. 天然物化学
  5. 安定な環状ケトンのC–C結合を組み替える
  6. 実験・数理・機械学習の融合による触媒理論の開拓
  7. 環拡大で八員環をバッチリ攻略! pleuromutilinの全合成
  8. 【マイクロ波化学(株)ウェビナー】 #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  9. 第110回―「動的配座を制御する化学」Jonathan Clayden教授
  10. センター試験を解いてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

無機物のハロゲンと有機物を組み合わせて触媒を創り出すことに成功

第449回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(椴山グループ)5年…

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP