[スポンサーリンク]

スポットライトリサーチ

ラジカルを活用した新しいケージド化法: アセチルコリン濃度の時空間制御に成功!!

[スポンサーリンク]

 

第 524回のスポットライトリサーチは、京都大学大学院 薬学研究科 薬科学専攻 博士後期課程 1 年の 中村 梨香子 (なかむら・りかこ) さんにお願いしました!


中村さんの所属される京大 化学研究所 大宮寛久研究室では、有機化学的手法により触媒を始めとするさまざまな新規機能性分子を創出し、創薬・生命科学へのアプリケーションを数多く達成しています。
今回、中村さんらの研究グループでは、同研究室において見出されていた有機ホウ素化合物を応用し、これまで不可能とされていたアセチルコリンを放出するケージド化合物の創成に成功しました。新戦略を用いたケージド化合物の創成とその応用可能性は高く評価され、J. Am. Chem. Soc. 誌に掲載されるとともに、京都大学・金沢大学より共同でプレスリリースされました。

Radical Caging Strategy for Cholinergic Optopharmacology

Rikako NakamuraTakeru YamazakiYui Kondo, Miho TsukadaYusuke MiyamotoNozomi ArakawaYuto Sumida*Taketoshi KiyaSatoshi Arai*, and Hirohisa Ohmiya*
J. Am. Chem. Soc. 2023, ASAP. DOI: 10.1021/jacs.3c00801

Abstract
Photo-caged methodologies have been indispensable for elucidating the functional mechanisms of pharmacologically active molecules at the cellular level. A photo-triggered removable unit enables control of the photo-induced expression of pharmacologically active molecular function, resulting in a rapid increase in the concentration of the bioactive compound near the target cell. However, caging the target bioactive compound generally requires specific heteroatom-based functional groups, limiting the types of molecular structures that can be caged. We have developed an unprecedented methodology for caging/uncaging on carbon atoms using a unit with a photo-cleavable carbon–boron bond. The caging/uncaging process requires installation of the CH2–B group on the nitrogen atom that formally assembles an N-methyl group protected with a photoremovable unit. N-Methylation proceeds by photoirradiation via carbon-centered radical generation. Using this radical caging strategy to cage previously uncageable bioactive molecules, we have photocaged molecules with no general labeling sites, including acetylcholine, an endogenous neurotransmitter. Caged acetylcholine provides an unconventional tool for optopharmacology to clarify neuronal mechanisms on the basis of photo-regulating acetylcholine localization. We demonstrated the utility of this probe by monitoring uncaging in HEK cells expressing a biosensor to detect ACh on the cell surface, as well as Ca2+ imaging in Drosophila brain cells (ex vivo).

研究を現場で統括された、教授の大宮寛久先生より、中村さんについてのコメントを頂戴しました!

中村梨香子さんは、有機分子の合成から in vitro 実験までやってのける知識・技術をもち、さらには、イヤリングをデザインし、自らの手でつくりあげることもできます。お洒落なイヤリングで、私の目は釘付けでした。こんな感じで、既存の枠にとらわれない“ものづくり”研究者です。博士後期課程でのさらなる活躍を楽しみにしていますね。

それでは、今回もインタビューをお楽しみください!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

ケージド化合物は、生理活性化合物に光で除去可能なユニット(Photoactivatable Protecting Group = PPG)の連結により一時的に不活化した分子で、まさにカゴに入れられたような状態です。光を照射することで、生理活性化合物が作用する時空間を制御できるため、この技術は細胞機能発現の機構解明に幅広く利用されています。一方で、ケージド化合物を作る際に汎用される PPG は、その連結に水酸基 (OH) やカルボキシル基 (CO2H) あるいはアミノ基 (NH) といった官能基が必要となります。つまり分子構造にこれらを持たない生理活性化合物はケージド化できないため、構造に制限がありました (図1)。

1  光ケージド化法の概略図と従来法の適用制限

大宮研究室は、以前、可視光で炭素–ホウ素結合が均等開裂して炭素ラジカルが発生する有機ホウ素化合物を見出しています図2上, J. Am. Chem. Soc. 2020, 142, 9938–9943)(当該研究のスポットライトリサーチ記事)。今回、アミンなどと簡単に置換反応を起こすヨウ素基を持つ有機ホウ素化合物を設計しました。この分子に第三級アミンを反応させることで、窒素原子にホウ素メチル基が導入されたベタイン構造が得られます。この分子に可視光照射するとホウ素上から炭素ラジカルが切り離され、生じた炭素ラジカルが水素を獲得することで活性なベタイン構造となります(図2下)。

図2

上記に基づいて、前駆体となる第三級アミンと PPG となる有機ホウ素化合物を連結することで、ケージド ACh の合成を達成しました。PPG への CF3 基の導入により吸収波長の長波長化および切断速度の向上が見られました (図3A)。また LED ライトだけでなく共焦点顕微鏡レーザー (405 nm) でも切断・放出が実現できたため、実際に細胞でのプローブとして実験を行いました。表面にAChを感知して光るセンサータンパク質 (図3B) を発現させた細胞を準備し、開発したケージド ACh (CagMeCF3-ACh) を添加しました。共焦点顕微鏡レーザーを照射したところ、有意に輝度が向上しました (図3C)。

図3 (A)ケージド ACh の合成(B)ACh センサータンパク質(C)ACh 濃度変化モニタリング

本プローブをショウジョウバエの脳を用いて、ライブイメージングを行いました。Ca2+ イオンセンサーである jGCaMP7c を発現したトランスジェニックショウジョウバエを準備し、その脳をスライスしてケージドプローブとインキュベートしました。その後、細胞実験と同様にレーザーを照射したところ、視神経葉やキノコ体領域で Ca2+ イオンの明確な増加が観測されました (図4)。以上より、光による ACh 濃度の時空間制御が可能となりました。

図4  ハエの脳を用いた ex vivo イメージング

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

一番思い入れがあるところは、PPG の分子修飾によって切断速度が向上したところです。この分子修飾に関する知見は、本研究に着手する前の研究テーマで得られたものです。私はこれまで、有機ホウ素化合物を用いて、ラジカル反応の開発を行なっていました。その際、収率の向上を目指して有機ホウ素化合物に置換基を導入しました。実際に収率の向上には至りませんでしたが、この知見をもとに PPG を分子修飾したところ、ケージド化合物の光反応性の向上に繋がりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

合成したケージド化合物を生細胞条件下で機能評価するところです。金沢大学 ナノ生命科学研究所の新井敏先生と山崎健さんのご指導のもと、細胞培養や共焦点顕微鏡の操作方法をゼロから勉強させていただきました。右も左もわからない中、考察の方法を丁寧に教えていただき、細胞イメージングの条件最適化について理解を深めることができました。自分の合成した分子が、実際に細胞条件下において機能しているところを間近に見ることができ、非常に貴重な経験をさせていただきました。

Q4. 将来は化学とどう関わっていきたいですか?

将来は、自分で設計した分子で人々の生活を豊かにできるような研究者になりたいと考えています。幼少の頃より“ものづくり”の世界に触れてきた中で、理論に従って自在に分子を組み立てることができる有機化学に強く惹かれました。現在は、大宮先生の京都大学への異動に伴い、新たな研究の場で博士後期課程がスタートしました。個性豊かすぎる研究室メンバーと共に研鑽を詰み、一研究者として成長していきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします!

ここまで読んでいただきありがとうございました。今までラジカル反応剤として有機合成反応の開発に用いてきた有機ホウ素化合物を、ケージド化合物として展開していく中で新たな発見がありました。今後、分子骨格をデザインすることで、さらなる機能性の向上を目指していきたいと思います。是非、論文も読んでいただきたいです

最後に、生体での機能評価に携わっていただきました新井敏先生、木矢剛智先生、山崎健さん、日頃より研究をご指導いただいている大宮先生、隅田有人先生、共にケージド化合物の開発を行った近藤結衣先輩や塚田美帆さん、研究室の皆さんにこの場をお借りして感謝申し上げます。そして、研究紹介を行う機会を設けていただいた Chem-Station スタッフの皆様に深く感謝いたします。

研究者の略歴

名前: 中村 梨香子(なかむら りかこ)
所属: 京都大学 大学院薬学研究科薬科学専攻 博士後期課程1年
研究室: 大宮 寛久 研究室
研究テーマ: ホウ素アート錯体を用いたケージド化法の開発

 

中村さん、大宮先生、インタビューにご協力いただき誠にありがとうございました!
それでは、次回のスポットライトリサーチもお楽しみに!

大宮研究室のスポットライトリサーチ

強酸を用いた従来法を塗り替える!アルケンのヒドロアルコキシ化反応の開発
機械学習用のデータがない?計算機上で集めませんか。データ駆動型インシリコ不斉触媒設計で有機合成DX
巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生させる
触媒的不斉交差ピナコールカップリングの開発
医薬品への新しい合成ルートの開拓 〜協働的な触媒作用を活用〜

関連書籍

DAICHAN

投稿者の記事一覧

創薬化学者と薬局薬剤師の二足の草鞋を履きこなす、四年制薬学科の生き残り。
薬を「創る」と「使う」の双方からサイエンスに向き合っています。
しかし趣味は魏志倭人伝の解釈と北方民族の古代史という、あからさまな文系人間。
どこへ向かうかはfurther research is needed.

関連記事

  1. 「タキソールのTwo phase synthesis」ースクリプ…
  2. 第54回天然有機化合物討論会
  3. タミフルの新規合成法・その4
  4. Reaxys Prize 2011発表!
  5. YADOKARI-XG 2009
  6. 正立方体から六面体かご型に分子骨格を変える
  7. ルミノール誘導体を用いるチロシン選択的タンパク質修飾法
  8. 高校生・学部生必見?!大学学術ランキング!!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Carl Boschの人生 その4
  2. 阪大・プリンストン大が発見、”高温”でも超伝導
  3. とあるカレイラの天然物〜Pallambins〜
  4. 実験手袋をいろいろ試してみたーつかいすてから高級手袋までー
  5. ReadCubeを使い倒す(3)~SmartCiteでラクラク引用~
  6. 蛍光と光増感能がコントロールできる有機ビスマス化合物
  7. ペラミビル / Peramivir
  8. 科学論文を出版するエルゼビアとの購読契約を完全に打ち切ったとカリフォルニア大学が発表
  9. 高分子鎖の「伸長」と「結晶化」が進行する度合いを蛍光イメージングで同時並列的に追跡する手法を開発
  10. ケイ素半導体加工に使えるイガイな接着剤

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP