[スポンサーリンク]

化学者のつぶやき

だんだん柔らかくなるCOF!柔軟性の違いによる特性変化

[スポンサーリンク]

共有結合性有機構造体(COF)の柔軟性の段階的な改変が、リンカーの交換および変換反応により達成された。さらに、COFの柔軟性の変化に伴うガス吸着特性の変化が明らかにされた。

MOF/COFの柔軟性改変

MOFやCOFの多くは、長さや角度が固定された構成部品で構築されるため剛直である。しかし、長さや角度にある程度の自由度をもつ構成部品を用いた場合、柔軟なMOF/COFが構築できる。この柔軟なMOF/COFは物理的/化学的刺激に応答して、その構造が大きく変化するため、剛直なMOF/COFと比較して高い刺激応答性をもつ(図1A)(1)。そのため、柔軟なMOF/COFは、その柔軟性と性質の関係および刺激応答性材料としての応用に興味がもたれている。

MOF/COFの柔軟性の改変は、構成分子の組み合わせから別々に合成する手法がよく用いられる(図1B)(2–4)。一方で、ゲスト分子の交換や化学反応により、すでに構築されているMOF/COFの柔軟性を改変させる手法が報告されている(4–8)。一例として、柔軟なMOFへのDiels–Alder反応によりリンカーを変化させ、MOFを剛直にする手法がある(図1C)(8)。しかし、以上の柔軟性の改変法はいずれも一段階であり、MOF/COFの柔軟性を多段階に変化させた例はない。もし、柔軟性の多段階改変が可能になれば、多機能なMOF/COF材料の開発に繋がるだろう。

今回著者らは、すでに構築したCOFに対してリンカー交換とリンカー変換の二つの手法を用いることで、柔軟性の段階的な改変を目指した(図1D)。また、一連のCOFの物性評価から、柔軟性の改変に伴う性質の変化を明らかにした。

図1. (A) 柔軟性による応答性の違い (B) 構成分子による柔軟性の改変法 (C) MOFの柔軟性の一段階改変 (D) COFの柔軟性の多段階改変

 

“/b>Gradually Tuning the Flexibility of Two-Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibility-Dependent Properties/b>”/b>

Zhou, Z.-B.; Sun, H.-H.; Qi, Q.-Y.; Zhao, X. i>Angew. Chem./i>,/i> Int. Ed. /i>2023/b>, 62, e202305131

DOI: a href=”https://doi.org/10.1002/anie.202305131″>10.1002/anie.202305131/a>

 

論文著者の紹介

研究者: Xin Zhao (赵新)

研究者の経歴:

1990–1994                                       B.Sc., Beijing Normal University, China
1994–2003          Ph.D., Shanghai Institute of Organic Chemistry (SIOC), China (Prof. Zhan-Ting Li and Xi-Kui Jiang)
2003–2008          Postdoc, Harvard University, USA (Prof. William von E. Doering) and The University of Chicago, USA (Prof. Luping Yu)
2008–2014                                       Associate Professor and Researcher, SIOC, China
2014–                                                  Professor, SIOC, China
研究内容:共役系の自己組織化、超分子戦略によるマイクロ/ナノスケール構造体の合成

 

論文の概要

著者らは、Rigid Precursor COF (P-COF)に対して酸性条件下オキサリルジヒドラジド(ODH)を添加し、リンカーの剛直なビフェニルジイミン構造を柔軟なオキサリルジヒドラゾン構造へ交換してSemi-Flexible COF (SF-COF)を合成した(図2A)。SF-COFは、フェニレンジイミン構造をもつRigid COF (R-COF)からも同条件で合成可能だが、構成分子から直接的には合成できなかった。次にSF-COFに対し、ボラン存在下TMDSを作用させ、C=N結合がC–N結合に変換されたFlexible COF (F-COF)を合成した。

リンカー交換および変換によるCOFの柔軟性変化は、THFに対する応答で評価した(図2B)。R-COFはTHFへの浸漬前後で粉末X線回折(PXRD)スペクトルが変化しなかったのに対し、SF-COFはTHFへの浸漬により(110)面に帰属されるピークがシフトした。これは、SF-COFがR-COFよりも柔軟であることを示す。合成後に真空乾燥で溶媒分子を除去したF-COFはピークを示さなかったが、THFへの浸漬によりピークが出現した。真空乾燥した際はODHリンカーが層間でランダムな水素結合を形成した無秩序な構造体となっており、浸漬した際は層間水素結合がTHFにより弱められ、秩序構造が復元したと考えられる。この無秩序構造から秩序構造への大きな転換はF-COFがSF-COFよりも柔軟であることを示している。以上より、R-COF < SF-COF < F-COFの順で、より柔軟になっていることが明らかになった。

さらに、柔軟性の改変に伴う性質の変化をN2/CO2ガスの吸着実験から明らかにした(図2C)。N2吸着では、秩序構造が保たれているP-COF、SF-COFに対し、無秩序構造となっているF-COFの吸着量は極端に小さい。一方、CO2吸着ではSF-COFの吸着量が最も多く、R-COFおよびF-COFの吸着量は中程度であった。SF-COFは、リンカーに豊富に存在するヘテロ原子がCO2と相互作用するためR-COFより吸着量が多くなったと考えられる。F-COFの吸着量がR-COFと同程度であったのは、双極子を有するCO2の吸着により一部秩序構造が復元したためと考えられる。このF-COFのN2に対して閉じ、CO2に対して開く性質は、N2/CO2混合気体からCO2を選択的に捕捉する技術への応用が期待される。

図2. (A) SF-COF、F-COFの合成 (B) THF応答性による柔軟性の比較 (C) N2吸着とCO2吸着 (ODH; Oxalyl dihydrazide, TMDS; 1,1,3,3-Tetramethyldisiloxane 、論文より引用、一部改変)

 

以上、リンカーの交換および変換によりCOFの柔軟性を段階的に改変する手法を開発し、柔軟性の違いによるCOFの特性変化を明らかにした。柔軟性有機構造体の開発における大きな一歩となったと言えよう。

用語説明

MOF                               金属有機構造体(Metal organic frameworks)

COF                                 共有結合性有機構造体(Covalent organic frameworks)

参考文献

  1. Seth, S.; Jhulki, S. Porous Flexible Frameworks: Origins of Flexibility and Applications. Mater. em>Horiz. 2021, 8, 700–727. DOI: 10.1039/D0MH01710H
  2. Li, Y.; Sui, J.; Cui, L.-S.; Jiang, H.-L. Hydrogen Bonding Regulated Flexibility and Disorder in Hydrazone-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2023, 145, 1359–1366. DOI: 10.1021/jacs.2c11926
  3. Zhao, C.; Diercks, C. S.; Zhu, C.; Hanikel, N.; Pei, X.; Yaghi, O. M. Urea-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 16438–16441. DOI: 10.1021/jacs.8b10612
  4. Zhang, J.-P.; Zhou, H.-L.; Zhou, D.-D.; Liao, P.-Q.; Chen, X.-M. Controlling Flexibility of Metal–Organic Frameworks. National Science Review 2018, 5, 907–919. DOI: 1093/nsr/nwx127
  5. Qian, C.; Qi, Q.-Y.; Jiang, G.-F.; Cui, F.-Z.; Tian, Y.; Zhao, X. Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. J. Am. Chem. Soc. 2017, 139, 6736–6743. DOI: 10.1021/jacs.7b02303
  6. Liu, H.; Chu, J.; Yin, Z.; Cai, X.; Zhuang, L.; Deng, H. Covalent Organic Frameworks Linked by Amine Bonding for Concerted Electrochemical Reduction of CO2. Chem 2018, 4, 1696–1709. DOI: 1016/j.chempr.2018.05.003
  7. Grunenberg, L.; Savasci, G.; Terban, M. W.; Duppel, V.; Moudrakovski, I.; Etter, M.; Dinnebier, R. E.; Ochsenfeld, C.; Lotsch, B. V. Amine-Linked Covalent Organic Frameworks as a Platform for Postsynthetic Structure Interconversion and Pore-Wall Modification. J. Am. Chem. Soc. 2021, 143, 3430–3438. DOI: 10.1021/jacs.0c12249
  8. Jędrzejowski, D.; Pander, M.; Nitek, W.; Bury, W.; Matoga, D. Turning Flexibility into Rigidity: Stepwise Locking of Interpenetrating Networks in a MOF Crystal through Click Reaction. Chem. Mater. 2021, 33, 7509–7517. DOI: 10.1021/acs.chemmater.1c02451

 

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 2010年ノーベル化学賞予想―トムソン・ロイター版
  2. 「ソーシャルメディアを活用したスタートアップの価値向上」 Blo…
  3. 洗浄ブラシを30種類試してみた
  4. ビタミンと金属錯体から合成した人工の酵素
  5. フラッシュ精製装置「バイオタージSelect」を試してみた
  6. 【Q&Aシリーズ❷ 技術者・事業担当者向け】 マイクロ…
  7. 経済産業省ってどんなところ? ~製造産業局・素材産業課・革新素材…
  8. アメリカで医者にかかる

注目情報

ピックアップ記事

  1. 平井 剛 Go Hirai
  2. アミロイド線維を触媒に応用する
  3. 有機化学の理論―学生の質問に答えるノート
  4. 光・電子機能性分子材料の自己組織化メカニズムと応用展開【終了】
  5. フロインターベルク・シェーンベルク チオフェノール合成 Freunderberg-Schonberg Thiophenol Synthesis
  6. 元素周期 萌えて覚える化学の基本
  7. 有機半導体の界面を舞台にした高効率光アップコンバージョン
  8. ベーシック反応工学
  9. DeuNet (重水素化ネットワーク)
  10. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年11月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

理研の研究者が考える未来のバイオ技術とは?

bergです。昨今、環境問題や資源問題の関心の高まりから人工酵素や微生物を利用した化学合成やバイオテ…

水を含み湿度に応答するラメラ構造ポリマー材料の開発

第651回のスポットライトリサーチは、京都大学大学院工学研究科(大内研究室)の堀池優貴 さんにお願い…

第57回有機金属若手の会 夏の学校

案内:今年度も、有機金属若手の会夏の学校を2泊3日の合宿形式で開催します。有機金…

高用量ビタミンB12がALSに治療効果を発揮する。しかし流通問題も。

2024年11月20日、エーザイ株式会社は、筋萎縮性側索硬化症用剤「ロゼバラミン…

第23回次世代を担う有機化学シンポジウム

「若手研究者が口頭発表する機会や自由闊達にディスカッションする場を増やし、若手の研究活動をエンカレッ…

ペロブスカイト太陽電池開発におけるマテリアルズ・インフォマティクスの活用

持続可能な社会の実現に向けて、太陽電池は太陽光発電における中心的な要素として注目…

有機合成化学協会誌2025年3月号:チェーンウォーキング・カルコゲン結合・有機電解反応・ロタキサン・配位重合

有機合成化学協会が発行する有機合成化学協会誌、2025年3月号がオンラインで公開されています!…

CIPイノベーション共創プログラム「未来の医療を支えるバイオベンチャーの新たな戦略」

日本化学会第105春季年会(2025)で開催されるシンポジウムの一つに、CIPセッション「未来の医療…

OIST Science Challenge 2025 に参加しました

2025年3月15日から22日にかけて沖縄科学技術大学院大学 (OIST) にて開催された Scie…

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー