[スポンサーリンク]

化学者のつぶやき

天然イミンにインスパイアされたペプチド大環状化反応

[スポンサーリンク]

スクリプス研究所・Phil S. Baranらは、天然に存在するペプチドのイミン環化過程にインスパイアされ、様々な構造を持つ大環状ペプチドを合成する手法を開発した。反応は水中で側鎖保護なしに進行する。生成したイミン(およびそれを還元したアミン)を足掛かりとし、機能性分子を結合させることもできる。

“Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products”
Malins, L. E.; deGruyiter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S.* J. Am. Chem. Soc. 2017, 139, 5233. DOI: 10.1021/jacs.7b01624 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

 分子量500~2000程度の中分子化合物は、タンパク-タンパク相互作用阻害などに代表される高難度創薬標的を狙える化合物として、近年需要が高まっている。中でもプロテアーゼ耐性が高く、膜透過性や薬物特性に優れる大環状ペプチドがとりわけ注目を集めている。

 Baranらは天然がつくり出す環状ペプチドを参考に、N末端アミンとC末端に導入したアルデヒドを直接環化させる方法によって、様々な大環状ペプチドへとアプローチする手法を開発した。原料はイミン体と平衡状態にあるが、これを適切な求核剤で捕捉することで平衡が生成物へと傾く(冒頭画像参照)。

技術と手法の肝

 非リボソームペプチド(non-ribosomal peptide)[1]は、高い構造多様性と様々な生物活性を持つことが知られている。その中には還元酵素経由でイミン環化を経るものが存在している。そのプロセスを参考にした本法で合成される環状ペプチドも、そのような優れた特性を秘める可能性を持つ。

冒頭論文より引用

 本法を実行するには、C末端にアルデヒドを有するペプチドを合成しなくてはならない。これはRinkアミドレジンを用いるFmoc固相合成法をアレンジすることで達成している。

主張の有効性検証

①環化反応条件の最適化

 環化反応は水中もしくは緩衝液中で進行する。最適濃度は1 mM。ペプチドの濃度を上げると分子間反応が進行したり、還元的アミノ化条件でアルデヒドが還元される副反応が起こる。原料のペプチドは-20℃で保管しても多量体を形成してしまう。しかしながらこれは平衡反応なので、1 mMの溶液にしてしばらく置いておくと解離し、問題なく後続の反応が進行するようになる。

②基質一般性

 Tyr, His, Ser, Asp, Arg, Gln, シスチン(Cys-Cys)等を含む5~10残基のペプチドに対し、ストレッカー型環化、還元的アミノ化環化がいずれも保護基フリーで進行した。Lysを含む基質であってもpHを調整してやれば、ほとんどN末のアミノ基が反応する。ただLys側鎖との反応も全く進行しないわけではなく、N末生成物との分離が難しい。Lysは保護したまま反応させるほうがベターではある。

適用基質の抜粋

③生体直交的な官能基導入

ストレッカー型反応では、13Cラベル化を簡単に行える。還元的アミノ化型反応では2級アミンが生成するので、そこを足掛かりとしてビオチン、アルキンタグの導入などが可能なことが実証されている。環化N末端のアミノ酸をCys、Ser、His、Trpなどにしておけばイミンが分子内でトラップされ、剛直な縮環構造に導くことも可能。

④アミノ酸配列が環化に与える影響

反応前と反応後のペプチドに対し温度可変NMRを取り、N-H結合の化学シフト推移から水素結合の度合を調べたところ、天然構造の非リボソームペプチドのほうが、人工的配列よりもペプチド内の水素結合が強く、また環化しやすいことが分かった。天然に存在する非リボソームペプチドは疎水性アミノ酸の含有率が多いため、疎水性相互作用も重要な役割を果たしていることが考察される。

コメント

  • 米製薬大手ブリストル・マイヤーズ・スクイブ(BMS)との共同研究である。ちなみにBMS社は2010年からペプチドリーム社と提携し、特殊環状ペプチド薬の臨床試験を昨年より開始している。

参考文献

  1. Schwarzer, D.; Finking, R.; Marahie, M. Nat. Prod. Rep. 2003, 20, 275. DOI: 10.1039/B111145K
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. おっさんマウスが小学生マウスを襲う?待ったの決め手はフェロモンに…
  2. Dead Endを回避せよ!「全合成・極限からの一手」⑧(解答編…
  3. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  4. ビッグデータが一変させる化学研究の未来像
  5. 巻いている触媒を用いて環を巻く
  6. ワークアップの悪夢 反応後の後処理で困った場合の解決策
  7. アンモニアを窒素へ変換する触媒
  8. 無限の可能性を秘めたポリマー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 研究倫理を問う入試問題?
  2. 電池長寿命化へ、充電するたびに自己修復する電極材
  3. 光触媒を用いたC末端選択的な脱炭酸型bioconjugation
  4. 化学者の単語登録テクニック
  5. アザジラクチン あざじらくちん azadirachtin
  6. 剛直な環状ペプチドを与える「オキサゾールグラフト法」
  7. 医薬品天然物化学 (Medicinal Natural Products: A Biosynthetic Approach)
  8. シラン Silane
  9. カーボンナノベルト合成初成功の舞台裏 (1)
  10. リガンド結合部位近傍のリジン側鎖をアジド基に置換する

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

ケムステ版・ノーベル化学賞候補者リスト【2020年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

第一回ケムステVプレミアレクチャー「光化学のこれから ~ 未来を照らす光反応・光機能 ~」を開催します!

ノーベル賞の発表も来週に迫っていますし、後期も始まりますね。10月から新しく始まるシーズンに、どこと…

細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドができる

第276回のスポットライトリサーチは、東京農工大学大学院工学研究院 准教授の吉野 大輔(よしの だい…

クラリベイト・アナリティクスが「引用栄誉賞2020」を発表!

9月23日に、クラリベイト・アナリティクス社から、2020年の引用栄誉賞が発表されました。こ…

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

Chem-Station Twitter

PAGE TOP