[スポンサーリンク]

化学者のつぶやき

天然イミンにインスパイアされたペプチド大環状化反応

[スポンサーリンク]

スクリプス研究所・Phil S. Baranらは、天然に存在するペプチドのイミン環化過程にインスパイアされ、様々な構造を持つ大環状ペプチドを合成する手法を開発した。反応は水中で側鎖保護なしに進行する。生成したイミン(およびそれを還元したアミン)を足掛かりとし、機能性分子を結合させることもできる。

“Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products”
Malins, L. E.; deGruyiter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S.* J. Am. Chem. Soc. 2017, 139, 5233. DOI: 10.1021/jacs.7b01624 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

 分子量500~2000程度の中分子化合物は、タンパク-タンパク相互作用阻害などに代表される高難度創薬標的を狙える化合物として、近年需要が高まっている。中でもプロテアーゼ耐性が高く、膜透過性や薬物特性に優れる大環状ペプチドがとりわけ注目を集めている。

 Baranらは天然がつくり出す環状ペプチドを参考に、N末端アミンとC末端に導入したアルデヒドを直接環化させる方法によって、様々な大環状ペプチドへとアプローチする手法を開発した。原料はイミン体と平衡状態にあるが、これを適切な求核剤で捕捉することで平衡が生成物へと傾く(冒頭画像参照)。

技術と手法の肝

 非リボソームペプチド(non-ribosomal peptide)[1]は、高い構造多様性と様々な生物活性を持つことが知られている。その中には還元酵素経由でイミン環化を経るものが存在している。そのプロセスを参考にした本法で合成される環状ペプチドも、そのような優れた特性を秘める可能性を持つ。

冒頭論文より引用

 本法を実行するには、C末端にアルデヒドを有するペプチドを合成しなくてはならない。これはRinkアミドレジンを用いるFmoc固相合成法をアレンジすることで達成している。

主張の有効性検証

①環化反応条件の最適化

 環化反応は水中もしくは緩衝液中で進行する。最適濃度は1 mM。ペプチドの濃度を上げると分子間反応が進行したり、還元的アミノ化条件でアルデヒドが還元される副反応が起こる。原料のペプチドは-20℃で保管しても多量体を形成してしまう。しかしながらこれは平衡反応なので、1 mMの溶液にしてしばらく置いておくと解離し、問題なく後続の反応が進行するようになる。

②基質一般性

 Tyr, His, Ser, Asp, Arg, Gln, シスチン(Cys-Cys)等を含む5~10残基のペプチドに対し、ストレッカー型環化、還元的アミノ化環化がいずれも保護基フリーで進行した。Lysを含む基質であってもpHを調整してやれば、ほとんどN末のアミノ基が反応する。ただLys側鎖との反応も全く進行しないわけではなく、N末生成物との分離が難しい。Lysは保護したまま反応させるほうがベターではある。

適用基質の抜粋

③生体直交的な官能基導入

ストレッカー型反応では、13Cラベル化を簡単に行える。還元的アミノ化型反応では2級アミンが生成するので、そこを足掛かりとしてビオチン、アルキンタグの導入などが可能なことが実証されている。環化N末端のアミノ酸をCys、Ser、His、Trpなどにしておけばイミンが分子内でトラップされ、剛直な縮環構造に導くことも可能。

④アミノ酸配列が環化に与える影響

反応前と反応後のペプチドに対し温度可変NMRを取り、N-H結合の化学シフト推移から水素結合の度合を調べたところ、天然構造の非リボソームペプチドのほうが、人工的配列よりもペプチド内の水素結合が強く、また環化しやすいことが分かった。天然に存在する非リボソームペプチドは疎水性アミノ酸の含有率が多いため、疎水性相互作用も重要な役割を果たしていることが考察される。

コメント

  • 米製薬大手ブリストル・マイヤーズ・スクイブ(BMS)との共同研究である。ちなみにBMS社は2010年からペプチドリーム社と提携し、特殊環状ペプチド薬の臨床試験を昨年より開始している。

参考文献

  1. Schwarzer, D.; Finking, R.; Marahie, M. Nat. Prod. Rep. 2003, 20, 275. DOI: 10.1039/B111145K
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Reaxys体験レポート:ログイン~物質検索編
  2. 炭素をつなげる王道反応:アルドール反応 (3)
  3. (–)-Vinigrol短工程不斉合成
  4. オープンアクセスジャーナルの光と影
  5. 化学系面白サイトでちょっと一息つきましょう
  6. 静電相互作用を駆動力とする典型元素触媒
  7. 「社会との関係を見直せ」とはどういうことか
  8. 超分子化学と機能性材料に関する国際シンポジウム2016

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第42回「激動の時代を研究者として生きる」荘司長三教授
  2. 5歳児の唾液でイグ・ノーベル化学賞=日本人、13年連続
  3. ボロールで水素を活性化
  4. スティーブン・ジマーマン Steven C. Zimmerman
  5. 第97回―「イメージング・センシングに応用可能な炭素材料の開発」Julie MacPherson教授
  6. 中皮腫治療薬を優先審査へ
  7. マイケル・オキーフィ Michael O’Keeffe
  8. 水素化ホウ素亜鉛 Zinc Bodohydride
  9. 【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!
  10. ビニル位炭素-水素結合への形式的分子内カルベン挿入

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第142回―「『理想の有機合成』を目指した反応開発と合成研究」山口潤一郎 教授

第142回の化学者インタビューは日本から、皆さんご存じ、山口潤一郎教授の登場です。名古屋大学理学部化…

【書籍】ゼロからの最速理解 プラスチック材料化学

今月発売された『ゼロからの最速理解 プラスチック材料化学』(佐々木 健夫 著,コロナ社)という書籍を…

重水は甘い!?

同位体はある元素、すなわち同一の原子番号をもつ原子核において、中性子数の異なる核種のことをいいますね…

人物でよみとく化学

概要化学の歴史をつくった約50人を収録。高校・大学の化学の勉強に役立つ16テーマをあつかい、…

金属ナトリウム分散体(SD Super Fine ™)

概要金属ナトリウム分散体(SD Super Fine ™)は、金属ナトリウムの微粒…

アクセラレーションプログラム 「BRAVE 2021 Spring」 参加チームのエントリー受付中!(5/10〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

Chem-Station Twitter

PAGE TOP