[スポンサーリンク]

化学者のつぶやき

天然イミンにインスパイアされたペプチド大環状化反応

[スポンサーリンク]

スクリプス研究所・Phil S. Baranらは、天然に存在するペプチドのイミン環化過程にインスパイアされ、様々な構造を持つ大環状ペプチドを合成する手法を開発した。反応は水中で側鎖保護なしに進行する。生成したイミン(およびそれを還元したアミン)を足掛かりとし、機能性分子を結合させることもできる。

“Peptide Macrocyclization Inspired by Non-Ribosomal Imine Natural Products”
Malins, L. E.; deGruyiter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S.* J. Am. Chem. Soc. 2017, 139, 5233. DOI: 10.1021/jacs.7b01624 (アイキャッチ画像は本論文より引用)

問題設定と解決した点

 分子量500~2000程度の中分子化合物は、タンパク-タンパク相互作用阻害などに代表される高難度創薬標的を狙える化合物として、近年需要が高まっている。中でもプロテアーゼ耐性が高く、膜透過性や薬物特性に優れる大環状ペプチドがとりわけ注目を集めている。

 Baranらは天然がつくり出す環状ペプチドを参考に、N末端アミンとC末端に導入したアルデヒドを直接環化させる方法によって、様々な大環状ペプチドへとアプローチする手法を開発した。原料はイミン体と平衡状態にあるが、これを適切な求核剤で捕捉することで平衡が生成物へと傾く(冒頭画像参照)。

技術と手法の肝

 非リボソームペプチド(non-ribosomal peptide)[1]は、高い構造多様性と様々な生物活性を持つことが知られている。その中には還元酵素経由でイミン環化を経るものが存在している。そのプロセスを参考にした本法で合成される環状ペプチドも、そのような優れた特性を秘める可能性を持つ。

冒頭論文より引用

 本法を実行するには、C末端にアルデヒドを有するペプチドを合成しなくてはならない。これはRinkアミドレジンを用いるFmoc固相合成法をアレンジすることで達成している。

主張の有効性検証

①環化反応条件の最適化

 環化反応は水中もしくは緩衝液中で進行する。最適濃度は1 mM。ペプチドの濃度を上げると分子間反応が進行したり、還元的アミノ化条件でアルデヒドが還元される副反応が起こる。原料のペプチドは-20℃で保管しても多量体を形成してしまう。しかしながらこれは平衡反応なので、1 mMの溶液にしてしばらく置いておくと解離し、問題なく後続の反応が進行するようになる。

②基質一般性

 Tyr, His, Ser, Asp, Arg, Gln, シスチン(Cys-Cys)等を含む5~10残基のペプチドに対し、ストレッカー型環化、還元的アミノ化環化がいずれも保護基フリーで進行した。Lysを含む基質であってもpHを調整してやれば、ほとんどN末のアミノ基が反応する。ただLys側鎖との反応も全く進行しないわけではなく、N末生成物との分離が難しい。Lysは保護したまま反応させるほうがベターではある。

適用基質の抜粋

③生体直交的な官能基導入

ストレッカー型反応では、13Cラベル化を簡単に行える。還元的アミノ化型反応では2級アミンが生成するので、そこを足掛かりとしてビオチン、アルキンタグの導入などが可能なことが実証されている。環化N末端のアミノ酸をCys、Ser、His、Trpなどにしておけばイミンが分子内でトラップされ、剛直な縮環構造に導くことも可能。

④アミノ酸配列が環化に与える影響

反応前と反応後のペプチドに対し温度可変NMRを取り、N-H結合の化学シフト推移から水素結合の度合を調べたところ、天然構造の非リボソームペプチドのほうが、人工的配列よりもペプチド内の水素結合が強く、また環化しやすいことが分かった。天然に存在する非リボソームペプチドは疎水性アミノ酸の含有率が多いため、疎水性相互作用も重要な役割を果たしていることが考察される。

コメント

  • 米製薬大手ブリストル・マイヤーズ・スクイブ(BMS)との共同研究である。ちなみにBMS社は2010年からペプチドリーム社と提携し、特殊環状ペプチド薬の臨床試験を昨年より開始している。

参考文献

  1. Schwarzer, D.; Finking, R.; Marahie, M. Nat. Prod. Rep. 2003, 20, 275. DOI: 10.1039/B111145K
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 一人二役のフタルイミドが位置までも制御する
  2. 研究最前線講演会 ~化学系学生のための就職活動Kickoffイベ…
  3. アメリカの大学院で受ける授業
  4. アカデミックから民間企業への転職について考えてみる
  5. 光エネルギーによって二酸化炭素を変換する光触媒の開発
  6. 2010年ノーベル化学賞予想―海外版
  7. 酸で活性化された超原子価ヨウ素
  8. 研究室でDIY!割れないマニホールドをつくろう・改

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米デュポンの7-9月期、ハリケーン被害などで最終赤字
  2. 専門用語(科学英単語)の発音
  3. スローン賞って知っていますか?
  4. ブーボー/ボドロー・チチバビン アルデヒド合成 Bouveault/Bodroux-Chichibabin Aldehyde Synthesis
  5. クロスメタセシスによる三置換アリルアルコール類の合成
  6. 2007年文化勲章・文化功労者決定
  7. 比色法の化学(前編)
  8. JCRファーマとはどんな会社?
  9. 肥満防止の「ワクチン」を開発 米研究チーム
  10. 科学的発見を加速する新研究ツール「SciFinder n」を発表

関連商品

注目情報

注目情報

最新記事

海外でのアカデミックポジションの公開インタビュー

アカデミックポジションの選考において、一般的なのか良く分かりませんが、欧米(スイス)でどういった選考…

柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質への第一歩~

第205回のスポットライトリサーチは、お茶の水女子大学 基幹研究院自然科学系・三宅 亮介 先生 にお…

光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす

可視光光触媒を用いたスピロ環骨格構築法が報告された。創薬分野においてsp3炭素豊富な骨格は、構造、活…

日本初の化学専用オープンコミュニティ、ケムステSlack始動!

もし日常的に、様々な分野の日本中の化学徒・研究者と、最先端の化学について自由闊達に議論を交わし合い、…

HACCP制度化と食品安全マネジメントシステムーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

農薬メーカの事業動向・戦略について調査結果を発表

 この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、農薬…

Chem-Station Twitter

PAGE TOP