[スポンサーリンク]

一般的な話題

カイコが紡ぐクモの糸

[スポンサーリンク]

絹と言えばシルクのとしてもおなじみですが、絹糸は手術の縫合糸など他にもいろいろな場面で使われています。通気や透湿に優れ、肌とよくなじむことに加えて、細さの割に優れた強靭さが、絹糸の特徴です。

このように、ただでさえ十分な魅力を持った繊維である絹糸ですが、これを凌駕する新材料、クモの糸について、画期的な手法が開発[1]されたため、ここに紹介します。

しなやかで強靭なクモの糸

クモの糸は、クモの生活を支える命綱であり、きわだった機械特性を持ちます[2]。クモの糸を束ねて作った直径3ミリメートルのひもで、体重66キログラムのヒトをぶらさげることができると言いますから、ずいぶんタフな素材です。芥川龍之介蜘蛛の糸』に登場するカンダタが、もしこのことを聞いたら、きっと悔しがることでしょう。

強さだけではなく、クモの糸はしなやかさをあわせ持つ驚くべき素材です。強度の高い鉄鋼を使ってバイオリンは作れませんが、クモの糸を弦にしたバイオリンが試しに作られたことがあります。通常のガット弦の場合よりも、クモの糸を弦にしたバイオリンは、柔らかな音を奏でたそうです。

カイコの糸も、クモの糸も、アミノ酸配列が互いに似通ったフィブロインと呼ばれるタンパク質が、いくつもいくつもより合わさってできています。フィブロインタンパク質のアミノ酸配列は、グリシン・アラニン・セリンなど側鎖の小さいアミノ酸が8割以上を占めます。サイズの小さいアミノ酸が並ぶことで、よりあわさったフィブロインタンパク質は、結晶のような性質を持ちます。しなやかさだけではない強度の秘訣は、ここにあるとされます。

GREEN0142.png

材料の観点から、とても興味深いクモの糸ですが、案の定なかなか大量生産には向きません。クモを密集して育てようとすれば、お互いに共喰いしてしまいます。桑の葉を食べるカイコのように穏やかな気性を、クモは持ちません。クモの糸が魅力ある材料であっても応用が進まない理由はここにあります。

 

クモが育てられないならばカイコを育てればいい

クモからフィブロイン遺伝子をクローニングして、遺伝子導入の容易な大腸菌で発現させるという試みは、すでになされています[3]。大腸菌なので他にも遺伝子を導入して、代謝経路を改変し、フィブロインの原料となるアミノ酸を生合成しやすくすることも可能です[3]。しかし、進化の観点でクモから遠く離れ、まったく異なる生活をしてきた大腸菌だけあって、フィブロインタンパク質はバラバラで、カイコのように紡がれた状態では得られません。精製も面倒です。

そこで満を持してカイコの登場[1]です。クモのフィブロイン遺伝子を、カイコに導入します。

ショウジョウバエほどではありませんが、カイコは分子遺伝学的な研究がよく進んだ昆虫[4]であり、遺伝子導入技術も整備されています。大腸菌と異なり、カイコは、まゆを作るため、フィブロインを蓄える絹糸腺があります。のりの役割を持つセリシンタンパク質をはじめ、糸状にするために必要な物質も、しっかりこの器官にあります。

GREEN0143.PNG

遺伝子導入は期待通りに成功。上手くいっているかレポートするために入れ込んだ緑色蛍光タンパク質の輝きも確認されました。そして、カイコが紡いだクモの糸の機械特性を調べたところ、従来の絹糸よりも格段に強靭さが増していました。

新しい機能材料として、クモの糸が流通する日も近いかもしれません。

 

参考論文

[1] “Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk ?bers with improved mechanical properties.” Florence Teule et al. Proc. Natl. Acad. Sci. USA 2012  DOI: 10.1073/pnas.1109420109

[2] “Spider silk as mechanical lifeline” Shigeyoshi Osaki Nature 1996  DOI: 10.1038/384419a0

[3] “Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber” Xiao-Xia Xia et al. Proc. Natl, Acad. Sci. USA 2010  DOI: 10.1073/pnas.1003366107

[4] “Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori” Ryo Futahashi et al. Insect Biochem. Mol. Biol. 2008  DOI: 10.1016/j.ibmb.2008.05.007

 

関連書籍

 

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. ナイトレンの求電子性を利用して中員環ラクタムを合成する
  2. 私がケムステスタッフになったワケ(4)
  3. 投票!2018年ノーベル化学賞は誰の手に!?
  4. (+)-フォーセチミンの全合成
  5. DeuNet (重水素化ネットワーク)
  6. 光触媒を用いるスピロ環合成法が創薬の未来を明るく照らす
  7. 水素製造に太陽光エネルギーを活用 -エタノールから水素を獲得し水…
  8. 武装抗体―化学者が貢献できるポイントとは?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 旭化成ファインケム、新規キラルリガンド「CBHA」の工業化技術を確立し試薬を販売
  2. 亜鉛挿入反応へのLi塩の効果
  3. 還元された酸化グラフェン(その1)
  4. 高分子材料におけるマテリアルズ・インフォマティクスの活用とは?
  5. アリ・ワーシェル Arieh Warshel
  6. English for Writing Research Papers
  7. ACSの隠れた名論文誌たち
  8. Reaxys体験レポート:ログイン~物質検索編
  9. ジオキシラン酸化 Oxidation with Dioxirane
  10. 第18回 出版業務が天職 – Catherine Goodman

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

電子のスピンに基づく新しい「異性体」を提唱―スピン状態を色で見分けられる分子を創製―

第614回のスポットライトリサーチは、京都大学大学院工学研究科(松田研究室)の清水大貴 助教にお願い…

Wei-Yu Lin教授の講演を聴講してみた

bergです。この度は2024年5月13日(月)に東京大学 本郷キャンパス(薬学部)にて開催されたW…

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP