[スポンサーリンク]

データサイエンス

山西芳裕 Yoshihiro Yamanishi

[スポンサーリンク]

山西 芳裕(やまにし よしひろ)は日本の科学者である。九州工業大学 大学院情報工学研究院 生命化学情報工学研究系・教授。専門はバイオインフォマティクス 、ケモインフォマティクス 、機械学習、AI創薬。第25回ケムステVシンポ「データサイエンスが導く化学の最先端」講師

経歴

2005  京都大学大学院理学研究科博士課程 修了、博士(理学)
2005- フランス パリ国立高等鉱業学校(École Nationale Supérieure des Mines) バイオインフォマティクスセンター ポスドク
2006- 京都大学 化学研究所 助手・助教
2008- フランス パリ国立高等鉱業学校(Mines ParisTech: École Nationale Supérieure des Mines) バイオインフォマティクスセンター 常勤研究員
2008- フランス キュリー研究所(Curie Institute) バイオインフォマティクスユニット 常勤研究員(兼任)
2012- 九州大学 高等研究院・生体防御医学研究所 准教授
2015- 科学技術振興機構さきがけ研究者(兼任)
2018- 九州工業大学 大学院情報工学研究院 生命化学情報工学研究系 教授

受賞歴

2003 京都大学化学研究所「所長賞」奨励賞
2014 文部科学大臣表彰「若手科学者賞」
2021 日本毒性学会「田邊賞」

研究業績

いくつかの研究内容について、以下で紹介します。詳細は研究室のHP(http://labo.bio.kyutech.ac.jp/~yamani/index_J.html)をご覧ください。

1)医薬品候補化合物の構造生成AI

本研究では、化学分野や生命医科学分野のビッグデータを解析し、医薬品候補となる低分子化合物や中分子化合物(ペプチドなど)の新規構造を生成するAIの開発を行っています。特に、所望の生物活性やオミクス情報(創薬標的遺伝子ノックダウンのトランスクリプトームなど)を入力とし、その性質を満たす化合物を自動で出力する深層学習モデルが特長です。構造生成の先行研究はありますが、化学構造の変換が不確実であり、生成する構造の多様性や、生物活性や毒性などが考慮されていません。生物活性・毒性情報やオミクス情報などの複数の性質を満たす化学構造を発生することで、自律的に分子設計を行います。新薬の開発期間短縮や開発費用の削減により、薬価の高騰の抑制や国家の医療費の削減にも貢献することが期待できます。例えば、ある創薬標的分子に対して活性を持つ医薬品候補化合物の構造を、創薬標的遺伝子ノックダウンのトランスクリプトームデータから生成する構造生成器の開発を行っています。

2)複数の薬剤の組み合わせ効果(薬剤シナジー)を明らかにするシナジー創薬学

複数の薬剤の組み合わせによる相乗効果(薬剤シナジー)を活用した化学療法が、がんや神経変性疾患など多因子疾患に対する有効な治療法として注目されています。治療効果の増強だけでなく、個々の薬剤の使用量を減らし、重篤な副作用の発現頻度を低下させるなどの利点があり、これまでの治療法を一新させる可能性があります。しかしながら、やみくもな薬剤の組み合わせは有害な副作用に繋がるため、最適な薬剤の組み合わせを同定する必要がありますが、極めて困難です。これまでに報告されてきた薬剤シナジーは、臨床研究で偶発的に発見されたものが多く、疾患特異的な薬剤シナジーの発現メカニズムはよく分かっていませんでした。薬剤シナジーは、薬剤群と生体分子群の相互作用によって生み出されると考えられますが、どの生体分子(治療標的分子)への作用の組み合わせが薬物シナジーに繋がるかは不明です。本研究では、化学・生命関連ビッグデータを有効利用し、薬剤シナジーを生み出す最適な薬物の組み合わせを予測するAI手法を開発します。

3)機械学習と医薬ビッグデータ解析によるAI創薬

医薬品開発において、創薬標的分子やその制御化合物を見つけることは重要課題です。これまで、注目する病気のデータを精査し、創薬標的分子や治療薬の探索がされてきましたが、創薬標的の候補となる生体分子は非常に多く、探索空間が広いため、有効な創薬標的分子や治療薬を選ぶのが困難という問題がありました。本研究では、病気を特徴付けるさまざまな分子間相互作用ネットワークを比較することにより、分子間の機能的な連動性を考慮し、病気間の共通性や特異性を明らかにする方法を提案しました。さらに、似ている病気の創薬標的分子や治療薬の事前知識を取り入れ、候補を絞り込むことにより創薬標的分子や治療薬を効率良く探索する機械学習アルゴリズム(AI基盤技術)を開発しました。これにより、従来法と比較して、創薬標的分子や治療薬を高い精度で探索することが可能となりました。開発手法は、創薬標的分子や治療薬の探索だけでなく、病気の分子メカニズムの解明、薬効予測などに活用できるため、医薬品開発に大きく貢献することが期待されます。

4)低分子化合物でのダイレクトリプログラミングによる再生医療

再生医療のため、すでに分化した細胞を別の種類の細胞にiPS細胞を介さずに直接転換するダイレクトリプログラミングが注目されています。本研究室では、ダイレクトリプログラミングのための機械学習手法を開発しています。われわれは、トランスクリプトーム情報(ヒト細胞の遺伝子発現プロファイルなど)、エピゲノム情報(ChIP-seqによる転写因子DNA結合など)、ゲノム情報(エンハンサーなど)、インターラクトーム情報(遺伝子制御ネットワークなど)の多階層オミックスデータをトランスオミクス解析し、ダイレクトリプログラミングを誘導する転写因子を予測する情報技術を開発しました。更に、低分子化合物によるダイレクトリプログラミングのための機械学習の手法を開発しています。通常は外来遺伝子を導入する方法がとられていますが、ウィルスに起因する発がんリスクが問題となります。分化誘導する転写因子セットの働きを模倣する低分子化合物セットを同定することで、ウィルスに起因する発がんリスクを回避するのが狙いです。本研究が成功すると、生体内で目的の細胞を作成して細胞移植が不要になるため、再生医療の革新的な進歩が期待できます。皮膚線維芽細胞から肝細胞、軟骨細胞、神経細胞、心筋細胞、膵臓細胞、パネート細胞へ直接変換を誘導する因子セットを見出しています。

関連文献

  • Kaitoh, K. and Yamanishi, Y., “TRIOMPHE: Transcriptome-based Inference and Generation of Molecules with Desired Phenotypes by Machine Learning”, Journal of Chemical Information and Modeling, 61(9), 4303–4320, 2021. DOI: 10.1021/acs.jcim.1c00967
  • Iida, M., Iwata, M., and Yamanishi, Y., “Network-based characterization of disease–disease relationships in terms of drugs and therapeutic targets”, Bioinformatics, 36, i516–i524, 2020. DOI: 10.1093/bioinformatics/btaa439
  • Iwata, M., Hirose, L., Kohara, H., Liao, J., Sawada, R., Akiyoshi, S., Tani, K., and Yamanishi, Y., “Pathway-based drug repositioning for cancers: computational prediction and experimental validation”, Journal of Medicinal Chemistry, 61(21), 9583−9595, 2018. DOI: 10.1021/acs.jmedchem.8b01044
  • Sawada, R., Iwata, H., Mizutani, S., and Yamanishi, Y., “Target-based drug repositioning using large-scale chemical-protein interactome data”, Journal of Chemical Information and Modeling, 55(12), 2717–2730, 2015. DOI: 10.1021/acs.jcim.5b00330
  • Yamanishi, Y., Kotera, M., Moriya, Y., Sawada, R., Kanehisa, M., and Goto, S., “DINIES: drug-target interaction network inference engine based on supervised analysis”, Nucleic Acids Research, 42, W39-W45, 2014 DOI: 10.1093/nar/gku337
  • Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kanehisa, M., “Prediction of drug-target interaction networks from the integration of chemical and genomic spaces”, Bioinformatics, 24, i232-i240, 2008. DOI: 10.1093/bioinformatics/btn162

関連書籍

Lodhi, H. and Yamanishi, Y., Chemoinformatics and Advanced Machine Learning Perspectives, IGI Global, 2010.

出版社のリンク: https://www.igi-global.com/book/chemoinformatics-advanced-machine-learning-perspectives/37360

関連動画

関連リンク

hoda

投稿者の記事一覧

大学院生です。ケモインフォマティクス→触媒

関連記事

  1. ハリー・グレイ Harry B. Gray
  2. アジズ・サンジャル Aziz Sancar
  3. キャリー・マリス Kary Banks Mullis
  4. 佐藤 伸一 Shinichi Sato
  5. ペッカ・ピューッコ Pekka Pyykkö
  6. エキモフ, アレクセイ イワノビッチ Екимов, Алекс…
  7. ヴィ·ドン Vy M. Dong
  8. 井口 洋夫 Hiroo Inokuchi

注目情報

ピックアップ記事

  1. 広大すぎる宇宙の謎を解き明かす 14歳からの宇宙物理学
  2. 発展が続く触媒研究~京大より触媒研究の成果が相次いで発表される~
  3. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授
  4. ヒト遺伝子の ヒット・ランキング
  5. ヒト胚研究、ついに未知領域へ
  6. 製薬各社 2010年度 第2四半期決算を発表
  7. エマルジョンラジカル重合によるトポロジカル共重合体の実用的合成
  8. クラリベイト・アナリティクスが「引用栄誉賞2019」を発表
  9. 原子状炭素等価体を利用してα,β-不飽和アミドに一炭素挿入する新反応
  10. 仏サノフィ・アベンティス、第2・四半期は6.5%増収

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年4月
 123
45678910
11121314151617
18192021222324
252627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP