[スポンサーリンク]

ケムステニュース

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

[スポンサーリンク]

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリーの需要は年々増加しています。しかし、リチウムイオンバッテリーの安全性や充電容量はまだ改良の余地があるといわれ、多くの研究者が研究・開発を続けています。そんな中、電極の材料を工夫することで従来のリチウムイオンバッテリーの性能を大きく向上させる技術を民間企業が開発し、2019年の商業化を目指しています。 (引用:Gigazine1月8日)

バッテリーに関する研究開発は電気自動車やモバイル機器の性能改善に直結するため、非常に盛んに行われています。今回の記事では、そのリチウムイオン電池の性能を飛躍的に向上する技術を持ったアメリカのベンチャー企業2社について紹介されています。まずリチウムイオン電池の構造ですが、下の図のようにリチウム酸化物を正極、グラファイトを負極としリチウムイオンが正極と負極の間を移動することにより充電と放電が行われます。充電をする際には、リチウムイオンが負極に貯蔵されるため、より多くのリチウムイオンが負極に貯蔵された方が容量が大きい電池となります。

リチウムイオン電池の構造(引用:ケムステ過去記事

そこで、負極の材料を炭素からシリコンに変えるとリチウムイオンの貯蔵量が飛躍に向上する(グラファイト:LiC6の形で貯蔵/シリコン:Li15Si4の形で貯蔵)ことが知られていますが、シリコンは充放電のたびに体積が大きく膨らんだりしぼんだりするという欠点があり、2016年にテスラがシリコンを混ぜた電池を開発したもののシリコンの量は最小限となっているようです。

カリフォルニアのベンチャー企業、Sila Nanotechnologiesでは、独自のシリコン負極を開発していて、バッテリーの厚さを67%薄くしつつ容量を20%向上することに成功しました。詳細な負極の構造は明らかにされていませんが、構造そのものは現在のグラファイトに負極に似ていて、その細孔の奥にシリコンが含まれているためシリコンによる体積変化が起きにくいとそうです。

Silaが米国エネルギー高等研究計画局に助成金を申請した際の資料、バッテリーは、ほとんど膨張していないことが赤のプロットからわかる。

Silaの創業者であり、ジョージア工科大学Gleb Yushinの教授は、負極が薄くしたことにより過充電による短絡が起きにくくなったと主張しています。BMWをはじめとするいくつかの自動車会社がSilaに興味を持っているものの、Yushin教授は最初の商業化のターゲットは、バッテリーのコストが決めてにならないウェアラブルだとしています。

Silaのプロトタイプバッテリー

シリコン負極は別のカリフォルニアのベンチャー企業であるEnovixも開発を進めています。Enovixでは、多孔性のシリコン負極と半導体製造プロセスを使った新しいバッテリーの構造を開発し、2017年には太陽電池に使われるシリコンウェーハを使ってリチウムイオン電池を製造すると公言していました。しかしながら、ウェーハを使う難しさが判明し現在は、通常の金属ホイルを使用したプロセスを開発しているようです。それでも負極にシリコンを使うことに変更はなく30から70%の容量を向上できると創業者でありCTOのAshok Lahiri氏は主張しています。

Enovixが開発しているリチウムイオン電池の構造(引用:How to Build a Safer, More Energy-Dense Lithium-ion Battery

この二つの会社の取り組みはリチウムイオン電池に関する研究で、これ以外に全固体電池などの新しい蓄電池の研究も盛んにおこなわれています。日常のすべてのモバイル機器に搭載されている電池ですが、今後の開発によっては毎日の充電という現代の日常の行為を大きく変えることになるかもしれません。

関連書籍

[amazonjs asin=”4822239470″ locale=”JP” title=”次世代電池2018″] [amazonjs asin=”B019EASNDC” locale=”JP” title=”バッテリーウォーズ 次世代電池開発競争の最前線”]

ケムステ関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 三井化学岩国大竹工場の設備が未来技術遺産に登録
  2. 砂糖から透明樹脂、大阪府立大などが開発に成功
  3. 製薬各社 2010年度決算
  4. ビールに使われている炭水化物を特定する方法が発見される
  5. 富山化の認知症薬が米でフェーズ1入り
  6. 米国もアトピー薬で警告 発がんで藤沢製品などに
  7. バイオディーゼル燃料による大気汚染「改善」への影響は……
  8. 2010年日本化学会各賞発表-学術賞-

注目情報

ピックアップ記事

  1. オルガネラ選択的な薬物送達法:②小胞体・ゴルジ体・エンドソーム・リソソームへの送達
  2. 第44回「100%の効率を目指せば、誤魔化しのないサイエンスが見える」安達千波矢教授
  3. 熱前駆体法を利用した水素結合性有機薄膜の作製とトランジスタへの応用
  4. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  5. 新しい構造を持つゼオライトの合成に成功!
  6. 性フェロモン感じる遺伝子、ガで初発見…京大グループ
  7. 本当の天然物はどれ?
  8. ガンマ線によるpHイメージングに成功 -スピンを用いて化学状態を非侵襲で観測-
  9. 積水化学、工業用接着剤で米最大手と提携
  10. 日本化学会第85回春季年会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP