[スポンサーリンク]

ケムステニュース

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

[スポンサーリンク]

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリーの需要は年々増加しています。しかし、リチウムイオンバッテリーの安全性や充電容量はまだ改良の余地があるといわれ、多くの研究者が研究・開発を続けています。そんな中、電極の材料を工夫することで従来のリチウムイオンバッテリーの性能を大きく向上させる技術を民間企業が開発し、2019年の商業化を目指しています。 (引用:Gigazine1月8日)

バッテリーに関する研究開発は電気自動車やモバイル機器の性能改善に直結するため、非常に盛んに行われています。今回の記事では、そのリチウムイオン電池の性能を飛躍的に向上する技術を持ったアメリカのベンチャー企業2社について紹介されています。まずリチウムイオン電池の構造ですが、下の図のようにリチウム酸化物を正極、グラファイトを負極としリチウムイオンが正極と負極の間を移動することにより充電と放電が行われます。充電をする際には、リチウムイオンが負極に貯蔵されるため、より多くのリチウムイオンが負極に貯蔵された方が容量が大きい電池となります。

リチウムイオン電池の構造(引用:ケムステ過去記事

そこで、負極の材料を炭素からシリコンに変えるとリチウムイオンの貯蔵量が飛躍に向上する(グラファイト:LiC6の形で貯蔵/シリコン:Li15Si4の形で貯蔵)ことが知られていますが、シリコンは充放電のたびに体積が大きく膨らんだりしぼんだりするという欠点があり、2016年にテスラがシリコンを混ぜた電池を開発したもののシリコンの量は最小限となっているようです。

カリフォルニアのベンチャー企業、Sila Nanotechnologiesでは、独自のシリコン負極を開発していて、バッテリーの厚さを67%薄くしつつ容量を20%向上することに成功しました。詳細な負極の構造は明らかにされていませんが、構造そのものは現在のグラファイトに負極に似ていて、その細孔の奥にシリコンが含まれているためシリコンによる体積変化が起きにくいとそうです。

Silaが米国エネルギー高等研究計画局に助成金を申請した際の資料、バッテリーは、ほとんど膨張していないことが赤のプロットからわかる。

Silaの創業者であり、ジョージア工科大学Gleb Yushinの教授は、負極が薄くしたことにより過充電による短絡が起きにくくなったと主張しています。BMWをはじめとするいくつかの自動車会社がSilaに興味を持っているものの、Yushin教授は最初の商業化のターゲットは、バッテリーのコストが決めてにならないウェアラブルだとしています。

Silaのプロトタイプバッテリー

シリコン負極は別のカリフォルニアのベンチャー企業であるEnovixも開発を進めています。Enovixでは、多孔性のシリコン負極と半導体製造プロセスを使った新しいバッテリーの構造を開発し、2017年には太陽電池に使われるシリコンウェーハを使ってリチウムイオン電池を製造すると公言していました。しかしながら、ウェーハを使う難しさが判明し現在は、通常の金属ホイルを使用したプロセスを開発しているようです。それでも負極にシリコンを使うことに変更はなく30から70%の容量を向上できると創業者でありCTOのAshok Lahiri氏は主張しています。

Enovixが開発しているリチウムイオン電池の構造(引用:How to Build a Safer, More Energy-Dense Lithium-ion Battery

この二つの会社の取り組みはリチウムイオン電池に関する研究で、これ以外に全固体電池などの新しい蓄電池の研究も盛んにおこなわれています。日常のすべてのモバイル機器に搭載されている電池ですが、今後の開発によっては毎日の充電という現代の日常の行為を大きく変えることになるかもしれません。

関連書籍

ケムステ関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. DNAに電流通るーミクロの電子デバイスに道
  2. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏…
  3. 三井物と保土谷 多層カーボンナノチューブを量産
  4. 【10周年記念】Chem-Stationの歩み
  5. 仏サノフィ・アベンティス、第2・四半期は6.5%増収
  6. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  7. 原油高騰 日本企業直撃の恐れ
  8. 浅野・県立大教授が化学技術賞

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 世界5大化学会がChemRxivのサポーターに
  2. 第63回―「生物のコミュニケーションを司る天然物化学」矢島 新 教授
  3. 第46回―「分子レベルの情報操作を目指す」Howard Colquhoun教授
  4. マイクロリアクターで新時代!先取りセミナー 【終了】
  5. ゴジラ級のエルニーニョに…出会った!
  6. ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-重水素化反応
  7. 「野依フォーラム若手育成塾」とは!?
  8. 光で水素を放出する、軽量な水素キャリア材料の開発
  9. ホウ素は求電子剤?求核剤?
  10. 多成分連結反応 Multicomponent Reaction (MCR)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

開催日:2023/05/31 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功

第521回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?

開催日:2023/06/01 申し込みはこちら■開催概要MI-6はこの度シリーズAラウン…

種子島沖海底泥火山における表層堆積物中の希ガスを用いた流体の起源深度の推定

第520回のスポットライトリサーチは、琉球大学大学院 理工学研究科海洋自然科学専攻 地殻内部水圏地化…

脂質ナノ粒子によるDDS【Merck/Avanti Polar Lipids】

mRNAワクチンなどの核酸医薬品は、生体内における安定性が低く、細胞内移行性も悪い。このため、核酸医…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP