[スポンサーリンク]

ケムステニュース

リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている

[スポンサーリンク]

スマートフォンや電気自動車の普及によって、エネルギー密度が高く充電効率も良いリチウムイオンバッテリーの需要は年々増加しています。しかし、リチウムイオンバッテリーの安全性や充電容量はまだ改良の余地があるといわれ、多くの研究者が研究・開発を続けています。そんな中、電極の材料を工夫することで従来のリチウムイオンバッテリーの性能を大きく向上させる技術を民間企業が開発し、2019年の商業化を目指しています。 (引用:Gigazine1月8日)

バッテリーに関する研究開発は電気自動車やモバイル機器の性能改善に直結するため、非常に盛んに行われています。今回の記事では、そのリチウムイオン電池の性能を飛躍的に向上する技術を持ったアメリカのベンチャー企業2社について紹介されています。まずリチウムイオン電池の構造ですが、下の図のようにリチウム酸化物を正極、グラファイトを負極としリチウムイオンが正極と負極の間を移動することにより充電と放電が行われます。充電をする際には、リチウムイオンが負極に貯蔵されるため、より多くのリチウムイオンが負極に貯蔵された方が容量が大きい電池となります。

リチウムイオン電池の構造(引用:ケムステ過去記事

そこで、負極の材料を炭素からシリコンに変えるとリチウムイオンの貯蔵量が飛躍に向上する(グラファイト:LiC6の形で貯蔵/シリコン:Li15Si4の形で貯蔵)ことが知られていますが、シリコンは充放電のたびに体積が大きく膨らんだりしぼんだりするという欠点があり、2016年にテスラがシリコンを混ぜた電池を開発したもののシリコンの量は最小限となっているようです。

カリフォルニアのベンチャー企業、Sila Nanotechnologiesでは、独自のシリコン負極を開発していて、バッテリーの厚さを67%薄くしつつ容量を20%向上することに成功しました。詳細な負極の構造は明らかにされていませんが、構造そのものは現在のグラファイトに負極に似ていて、その細孔の奥にシリコンが含まれているためシリコンによる体積変化が起きにくいとそうです。

Silaが米国エネルギー高等研究計画局に助成金を申請した際の資料、バッテリーは、ほとんど膨張していないことが赤のプロットからわかる。

Silaの創業者であり、ジョージア工科大学Gleb Yushinの教授は、負極が薄くしたことにより過充電による短絡が起きにくくなったと主張しています。BMWをはじめとするいくつかの自動車会社がSilaに興味を持っているものの、Yushin教授は最初の商業化のターゲットは、バッテリーのコストが決めてにならないウェアラブルだとしています。

Silaのプロトタイプバッテリー

シリコン負極は別のカリフォルニアのベンチャー企業であるEnovixも開発を進めています。Enovixでは、多孔性のシリコン負極と半導体製造プロセスを使った新しいバッテリーの構造を開発し、2017年には太陽電池に使われるシリコンウェーハを使ってリチウムイオン電池を製造すると公言していました。しかしながら、ウェーハを使う難しさが判明し現在は、通常の金属ホイルを使用したプロセスを開発しているようです。それでも負極にシリコンを使うことに変更はなく30から70%の容量を向上できると創業者でありCTOのAshok Lahiri氏は主張しています。

Enovixが開発しているリチウムイオン電池の構造(引用:How to Build a Safer, More Energy-Dense Lithium-ion Battery

この二つの会社の取り組みはリチウムイオン電池に関する研究で、これ以外に全固体電池などの新しい蓄電池の研究も盛んにおこなわれています。日常のすべてのモバイル機器に搭載されている電池ですが、今後の開発によっては毎日の充電という現代の日常の行為を大きく変えることになるかもしれません。

関連書籍

ケムステ関連リンク

Zeolinite

Zeolinite

投稿者の記事一覧

企業の研究員です。最近、合成の仕事が無くてストレスが溜まっています。

関連記事

  1. タルセバ、すい臓がんではリスクが利点を上回る可能性 =FDA
  2. 「アジア発メジャー」狙う大陽日酸、欧州市場に参入
  3. 住友化学が通期予想据え置き、カギ握る情報電子化学の回復
  4. Natureが査読無しの科学論文サイトを公開
  5. 「日本化学連合」が発足、化学系学協会18団体加盟
  6. バイオディーゼル燃料による大気汚染「改善」への影響は……
  7. 粉いらずの指紋検出技術、米研究所が開発
  8. 超薄型、曲げられるMPU開発 セイコーエプソン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子機械を組み合わせてアメーバ型分子ロボットを作製
  2. 生体外の環境でタンパクを守るランダムポリマーの設計
  3. 研究室でDIY!~光反応装置をつくろう~
  4. リケジョ注目!ロレアル-ユネスコ女性科学者日本奨励賞-2013
  5. キラルアニオン相関移動-パラジウム触媒系による触媒的不斉1,1-ジアリール化反応
  6. 世界の化学企業いくつ知っていますか?
  7. 立体選択的な(+)-Microcladallene Bの全合成
  8. 日本化学会と日本化学工業協会に新会長就任
  9. 中谷宇吉郎 雪の科学館
  10. すごい分子 世界は六角形でできている

関連商品

注目情報

注目情報

最新記事

Carl Boschの人生 その6

Tshozoです。安価で活性の高い触媒を見出した前回のつづき、早速いきます。(2)産業界との連携…

第80回―「グリーンな変換を実現する有機金属触媒」David Milstein教授

第80回の海外化学者インタビューは、デヴィッド・ミルスタイン教授です。ワイツマン化学研究所の有機化学…

自己修復性高分子研究を異種架橋高分子の革新的接着に展開

第257回のスポットライトリサーチは、東京工業大学 大学院物質理工学院・鶴岡あゆ子さんにお願いしまし…

コロナウイルス関連記事 まとめ

新型コロナウイルスの影響で、キャンパスが閉鎖となる大学も増えてきていますね。私の周りでは、コロナウイ…

機械的力で Cu(I) 錯体の発光強度を制御する

第256回のスポットライトリサーチは、沖縄科学技術大学院大学(OIST)・錯体化学触媒ユニット 狩俣…

東京化成工業より 春の学会年会に参加予定だったケムステ読者の皆様へ

東京化成工業は、東京理科大学で開催の日本化学会第100春季年会付設展示会、京都国際会館で開催の日本薬…

Chem-Station Twitter

PAGE TOP