[スポンサーリンク]

ケムステニュース

マイクロ波加熱を用いた省エネ・CO2削減精製技術によりベリリウム鉱石の溶解に成功

[スポンサーリンク]

国立研究開発法人量子科学技術研究開発機構 量子エネルギー部門六ヶ所研究所とマイクロ波化学株式会社は、令和3年12月22日、マイクロ波加熱を用いたレアメタルの省エネ精製技術に関する共同研究契約を締結して活動を進めてきました。リチウム鉱山で採鉱し選別された実際のリチウム鉱石であるスポジュミン精鉱の溶解成功に続き、この度、より溶解が困難なベリリウムの実鉱石ベリルを溶解することに成功しましたのでご報告いたします。  (引用:3月30日マイクロ波化学プレスリリース)

マイクロ波化学ではマイクロ波プロセスの研究を行っており、これまでに共同研究などを通じて様々な分野での活用を開拓してきました。今回、ベリリウム鉱石を溶解させる応用で新たな発表がありましたので紹介させていただきます。

化学ではあまり登場しないベリリウムですが実は注目されている元素であり、銅に2%程度添加するだけで、導電性を維持したまま強度がステンレス並みになり、スマホや電気自動車の電子部品、第5世代通信(5G)通信アンテナに使用されているそうです。また、未来の発電方法として研究が進んでいる核融合ではベリリウムが中性子倍増材として重要な役割を担っています。

中性子増倍材の役割とベリリウムの安定確保の必要性(出典:量子科学技術研究開発機構プレスリリース

多くの無機材料は、天然から採掘される原料を精錬して純度を高めてから各製品に使われます。今回の題材となったベリリウムの場合、従来技術では、2,000℃もの高温で鉱石を溶融し、その後急冷して、より溶解しやすいガラス構造に変化させるガラス化処理と、そのガラスを250℃以上の濃硫酸で加熱溶解処理(焙焼処理)する2段階の加熱処理が必要であり、非常にコストがかかっているのが現状です。

そこで量子科学技術研究開発機構 核融合エネルギー部門六ヶ所核融合研究所 増殖機能材料開発グループでは、環境性に優れる新しいベリリウム精製技術を開発しています。具体的に化学処理とマイクロ波加熱を組み合わせたアルカリ・マイクロ波溶融技術を研究しており、2021年には0.2グラムのベリリウム結晶単体を使用し、机上試験規模での原理実証に成功しています。

そして今回、マイクロ波化学が製作した直径約 50 cm、高さ約 100 cmの反応器を有するマイクロ波加熱ベンチ装置を用いて、アルカリ・マイクロ波溶融技術による溶解性を調べる実証試験を行いました。その結果、ベンチ規模の100グラムのベリリウム鉱石を300℃の加熱処理のみでベリリウムを酸に溶解可能であることを実証し、同時に精製プロセスの簡素化も実現しました。

ベリリウム(Be)とリチウム(Li)の従来の精製技術(左右のプロセス)と新たな低温精製技術(中央のプロセス)(出典:マイクロ波化学プレスリリース)

2022年には、リチウムについてもマイクロ波を使って加熱温度300℃で溶解することに成功しており、両元素に対して精製に係る対環境負荷の低減のみならず、同一の溶解設備で異なる鉱石の溶解処理も可能になり、価格の低下にも期待できるそうです。

従来技術と新たな低温精製技術におけるCAPEX/OPEX/CO2排出量の相対比較 (出典:量子科学技術研究開発機構プレスリリース

化学品の製造において加熱するプロセスは数え切れないほどあり、それらをすべてマイクロ波での加熱に置き換えることができれば、相当量の使用エネルギーを削減でき、二酸化炭素の排出を抑えることができます。一方で製造プロセスは一つ一つ異なるため、状況に合わせて設備の最適化する必要があると考えられます。また大規模設備の更新には、多大な投資が必要であり、技術が確立しても導入は簡単ではありません。そのため、このマイクロ波を活用する技術が広く普及するような技術開拓に期待します。

関連書籍

[amazonjs asin=”4627786441″ locale=”JP” title=”マイクロ波工学 第4版”] [amazonjs asin=”4274229300″ locale=”JP” title=”マイクロ波工学の基礎”]

関連リンク

 

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 関大グループ、カプロラクタムの新製法開発
  2. 夏本番なのに「冷たい炭酸」危機?液炭・ドライアイスの需給不安膨ら…
  3. ノーベル化学賞田中さん 富山2大学の特任教授に
  4. ケムステニュース 化学企業のグローバル・トップ50が発表【202…
  5. 周期表を超えて~超原子の合成~
  6. つり革に つかまりアセる ワキ汗の夏
  7. 産総研「先端半導体研究センター」を新たに設立
  8. ヤンセン 新たな抗HIV薬の製造販売承認を取得

注目情報

ピックアップ記事

  1. MAC試薬 MAC Reagent
  2. ケムステ国際版・中国語版始動!
  3. 化学者がコンピューター計算を行うべきか?
  4. NMR化学シフト予測機能も!化学徒の便利モバイルアプリ
  5. ガラス器具を見積もりできるシステム導入:旭製作所
  6. ひどい論文を書く技術?
  7. 日本学士院賞・受賞化学者一覧
  8. 稀少な金属種を使わない高効率金属錯体CO2還元光触媒
  9. マイルの寄付:東北地方太平洋沖地震
  10. 有機反応を俯瞰する ー縮合反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年4月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

ペーパークラフトで MOFをつくる

第650回のスポットライトリサーチには、化学コミュニケーション賞2024を受賞された、岡山理科大学 …

月岡温泉で硫黄泉の pH の影響について考えてみた 【化学者が行く温泉巡りの旅】

臭い温泉に入りたい! というわけで、硫黄系温泉を巡る旅の後編です。前回の記事では群馬県草津温泉をご紹…

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP