[スポンサーリンク]

B

ベンザイン Benzyne

 

概要

ベンゼンから水素原子を二つ取り除いたジデヒドロベンゼンを俗にベンザインと呼ぶ。

以下の3種の位置異性体が知られている。合成化学的にはオルト位の2水素が取り除かれたo-ベンザインが特に重要である。強力な求電子性を示し、Diels-Alder反応の良好なジエノフィルとして働く。p-ベンザインはエンジイン環化(正宗-Bergman環化)の中間体として知られる。

benzyne_7.gif

基本文献

<revirw of aryne>
・Heaney, H. Chem. Rev. 1962, 62, 81. doi:10.1021/cr60216a001
・Pellissier, H.; Santelli, M. Tetrahedron 200359, 701. doi:10.1016/S0040-4020(02)01563-6
・ Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem. Int. Ed. 2003, 42, 502. DOI: 10.1002/anie.200390151
・ Sanz, R. Org. Prep. Proced. Int. 2008, 40, 215. DOI:10.1080/00304940809458089
・ Kitamura, T. Aust. J. Chem. 2010, 63, 987. doi:10.1071/CH10072
・Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012112, 3550. DOI: 10.1021/cr200478h
・ Gampe, C. M.; Carreira, E. M. Angew. Chem. Int. Ed. 201251, 3766. DOI: 10.1002/anie.201107485

<reivew of heteroaryne>
・ Goetz, A. E.; Garg, N. K. J. Org. Chem. 201479, 846. doi:10.1021/jo402723e

・ Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015, DOI: 10.1039/c4cc06445c

<aryne distortion model>
・ Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267. DOI: 10.1021/ja9098643
・ Im, G-Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, E. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010132, 17933. DOI: 10.1021/ja1086485
・Goetz, A. E.; Bronner, S. M.; Cisneros, J. D.; Melamed, J. M.; Paton, E. S.; Houk, K. N.; Garg, N. K. Angew. Chem. Int. Ed. 201251, 2758. DOI: 10.1002/anie.201108863
・Goetz, A. E.; Garg, N. K. Nat. Chem. 20135, 54. doi:10.1038/nchem.1504
・Medina, J. M.; Mackey, J. L.; Garg, N, K.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 15798. DOI: 10.1021/ja5099935

開発の歴史

1940年代にWittig (1940), Gilman (1945), Bergstrom (1946)らによってハロベンゼンに強塩基を作用させると思いがけない反応が起こることが報告された。しかしながらベンザインの構造は提唱されていなかった。1953年にRobertsらがこの反応を詳細に調べ、ベンザイン中間体を経由していることが提唱された。

These facts as well as the orientation data for various substituents can be accomodated by an elimination-addition mechanism involving at least transitory existence of an electrically neutral benzyne intermediate.

J. D. Roberts, 1953.

John D. Roberts

John D. Roberts

反応機構

o-ベンザインの三重結合は安定形である直線型から大きく歪んでいる。このため大変不安定な化学種であり、反応中間体として知られている。

ベンザインの三重結合長(1.24Å)は典型的な二重結合(エチレン1.34Å)と三重結合(アセチレン1.20Å)の中間値である。

溶液中では求電子性を示す。たとえば冒頭の置換反応は芳香族求核置換ではなく、ベンザインへ求核付加する機構で進むことが知られている。これは炭素同位体標識(赤い米印で示した部分)によって支持されている。

ベンザインへの求核反応は位置選択性は置換基パタンによって規定されるが、最近になって環歪みモデルによって位置選択性が予測可能との知見が報告されている。

benzyne_8

 

反応例

ベンザイン(=ひずんだアルキン)の環化三量化

alkyene_trimer_6.gif

分子内求核攻撃[1]

 

benzyne_2.gif

ターフェニル誘導体の合成

benzyne_4.gifGilvocarcin類の合成[2]benzyne_5.gif

インドライン中間体を経由する全合成[3]benzyne_6.gif

 

実験手順

ベンザイン経由でのアシルアルキル化[4]

benzyne_1.gif

ジムロート・温度計・撹拌子を備え、加熱乾燥させた500mL三径丸底フラスコに、窒素雰囲気下CsF (19.7 g, 130 mmol, 2.5 equiv)を加える。無水アセトニトリル(260mL)をシリンジで加え、撹拌しながらアセト酢酸メチル(5.60 mL, 6.01 g, 51.8 mmol, 1.00 equiv)と2-(trimethylsilyl)phenyl trifluoromethanesulfonate (15.7 mL, 19.3 g, 64.7mmol, 1.25 equiv)をシリンジで加える。反応溶液をオイルバスに浸して40分加熱還流させる。溶液は加熱に従い懸濁状液から黄色、橙色、再び黄色溶液へと変化していく。オイルバスから引き上げて室温まで放冷し、溶液を飽和食塩水(200mL)で希釈する。水層をジエチルエーテル(3×200mL)で抽出し、合わせた有機層を無水硫酸ナトリウムで乾燥させる。ろ過後、有機層をエバポレータ(35℃, 45 mmHg)で濃縮すると橙色油状物質が得られる。カラムクロマトグラフィ(SiO2, 170g, ジエチルエーテル/ヘキサン)で大まかに精製した後、減圧蒸留(124?130℃, 0.75 mmHg)を行うことで、目的物を白色結晶性固体として得ることができる(6.63 g, 67%)。

実験のコツ・テクニック

 

参考文献

[1] Agami, C.; Couty, F.; Poursolis, M.; Vaissermann, J. Tetrahedron 1992, 48, 431. doi:10.1016/S0040-4020(01)89005-0
[2] Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. doi:10.1021/ja00082a023
[3] Huters, A. D.; Quasdorf, K. W.; Styduhar, E. D.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 15797. doi:10.1021/ja206538k
[4] Ebner, D. C.; Tambar, U. K.; Stoltz. B. M. Org. Synth. 2009, 86, 161. [website]

 

関連書籍

外部リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ボイヤー・シュミット・オーブ転位 Boyer-Schmidt-A…
  2. アセタール還元によるエーテル合成 Ether Synthesis…
  3. p-メトキシベンジル保護基 p-Methoxybenzyl (P…
  4. コールマン試薬 Collman’s Reagent
  5. コーリー・ニコラウ マクロラクトン化 Corey-Nicolao…
  6. レイングルーバー・バッチョ インドール合成 Leimgruber…
  7. ヒドロメタル化 Hydrometalation
  8. 芳香族メチルの酸化 Oxidation of Methyl Gr…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成創造の軌跡―126のマイルストーン
  2. FT-IR(赤外分光法)の基礎と高分子材料分析の実際【終了】
  3. ノビリシチンA Nobilisitine A
  4. Pubmed, ACS検索
  5. 米デュポン、高機能化学部門を分離へ
  6. マッテソン反応 Matteson Reaction
  7. 「科研費の採択を受けていない研究者」へ研究費進呈?
  8. 化学系プレプリントサーバー「ChemRxiv」のβ版が運用開始
  9. 液体ガラスのフシギ
  10. 武田薬品、高血圧治療剤が米で心不全の効能追加

関連商品

注目情報

注目情報

最新記事

触媒のチカラで拓く位置選択的シクロプロパン合成

嵩高いコバルト錯体を触媒として用いた位置選択的Simmons–Smith型モノシクロプロパン化反応が…

「原子」が見えた! なんと一眼レフで撮影に成功

An Oxford University student who captured an image…

2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」

2月も後半となり、3月1日の就活解禁に向けて、2019年卒業予定の学生のみなさんは、就活モードが本格…

高専シンポジウム in KOBE に参加しました –その 2: 牛の尿で発電!? 卵殻膜を用いた燃料電池–

1 月 27 日に開催された第 23 回 高専シンポジウム in KOBE の参加報告の後編です。前…

化学探偵Mr.キュリー7

昨年3月からついに職業作家となった、化学小説家喜多喜久氏。その代表作である「化学探偵Mr.キュリー」…

き裂を高速で修復する自己治癒材料

第139回目のスポットライトリサーチは、物質・材料研究機構(NIMS) 構造材料研究拠点 長田 俊郎…

Chem-Station Twitter

PAGE TOP