[スポンサーリンク]

化学者のつぶやき

光分解性シアニン色素をADCのリンカーに組み込む

 

抗体薬物複合体 (ADC: Antibody Drug Conjugate)は、タンパク質と特異的に結合できる抗体に小分子薬を接続することで、がん細胞選択的に小分子薬を作用させる分子標的薬です(図 1)。ADCは2000年代から急成長しており、既に二つの承認医薬が登場しています。

 

 

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

図1. a ADCの作用機序[1]. まずがん細胞特異的に発現している膜タンパク質に抗体が結合し, ADCが細胞内に取り込まれる. リソソームにADCが運ばれるとリンカーが開裂し, 小分子薬が放出される. 小分子薬は標的タンパクに結合することで生体機能を阻害し, 細胞死に導く. b FDAから承認を受けたADC (T-DM1).

ケムステのADCに関する記事は以下参照。

ADCのさらなる効率向上や毒性の低減において、小分子薬を狙った場所で分離するリンカー開裂反応の開発がカギを握ります。

今回はそのような観点から、最近報告された「ADCのリンカーに対するシアニン色素の導入」について簡単にお話しましょう。

 

近赤外光で分解できるシアニン色素の開発

2014年にNational Cancer InstituteのSchnermannらは、近赤外光で分解し小分子薬を放出できるシアニン色素の開発に成功しました(図 2)。[2]

近赤外光は650-900 nmの波長域を指し、生体組織による吸収が小さいため高い浸透性(数cm程度)をもちます。

小分子薬が連結されたシアニン色素は、光照射によって1光子励起されると、酸化の付加を経てアルケンが開裂する。続いて、C4′-N結合が加水分解され、環状ウレアが生成する過程で小分子薬が放出されます。

 

図2 光分解性シアニン色素の分解機構

図2 光分解性シアニン色素の分解機構

 

ADCリンカーに組み込むと?

さらに最近、Schnermannらは、光分解性シアニン色素をADCのリンカーに組み込むことで近赤外光による小分子薬分離を初めて達成しました(図 3)。[3]

このADCは光照射されないかぎり小分子薬が放出されないため、がん細胞以外の組織への負担を低減できると考えられます。実用化にあたっては光分解性シアニン色素の化学安定性や光分解効率の向上が必要ですが、なかなかおもしろいアイデアではないかと思います。

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

図3. aシアニン色素への近赤外光照射によるADCの分解. b(左)赤丸は590 nmの光を照射した部位. 黒丸は光を照射しない部位. (右)腫瘍へのADC局在化を示した近赤外光イメージング. c 光照射後の近赤外光イメージング. 光照射した腫瘍のみ, シアニン色素が照射量依存的に多く分解している.

 

関連文献

  1.  Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Angew. Chem., Int. Ed. 2014, 53, 3796. DOI: 10.1002/anie.201307628
  2. Gorka, A. P.; Nani, R. R.; Zhu, J. J.; Mackem, S.; Schnermann, M. J.  J. Am. Chem. Soc. 2014136, 14153. DOI: 10.1021/ja5065203
  3. Nani, R. R.; Gorka, A. P.; Nagaya, T.; Kobayashi, H.; Schnermann, M. J.;Angew. Chem. Int. Ed. 2015, 54, 13635. DOI;: 10.1002/anie.201507391

 

関連書籍

The following two tabs change content below.
bona
愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  2. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』
  3. 2013年就活体験記(2)
  4. 化学研究ライフハック:情報収集の機会損失を減らす「Read It…
  5. PACIFICHEM2010に参加してきました!Final!
  6. タウリン捕まえた!カゴの中の鳥にパイ電子雲がタッチ
  7. 「科学者の科学離れ」ってなんだろう?
  8. (+)-sieboldineの全合成

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. 2011年ノーベル化学賞予測―トムソン・ロイター版
  2. ホストとゲスト?
  3. 含フッ素遷移金属エノラート種の合成と応用
  4. FBDD Fragment Based Drug Discovery
  5. H-1B ビザの取得が難しくなる!?
  6. ヘキサン (hexane)
  7. 低分子ゲル化剤の特性・活用と、ゲル化・増粘の基礎【終了】
  8. 春季ACSMeetingに行ってきました
  9. フラーレンの単官能基化
  10. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate

注目記事

関連商品

注目情報

試薬検索:東京化成工業



最新記事

Brønsted酸触媒とヒドロシランによるシラFriedel-Crafts反応

本記事では, Martin Oestreich教授 (ベルリン工大) らが昨年報告した「Brønst…

A値(A value)

A値(A value)とは1955年にWinsteinとHolnessにより報告された一置換シクロヘ…

NMR Chemical Shifts ー溶媒のNMR論文より

NMR溶媒の論文といったら、あの論文しかありません。そう、各種溶媒の各種重溶媒中での NMR データ…

bothの使い方

形容詞もしくは代名詞の働きをする場合(接続詞としての用法もあります)、「both」は日本人学者によっ…

単一分子を検出可能な5色の高光度化学発光タンパク質の開発

第76回のスポットライトリサーチは、大阪大学産業科学研究所永井研究室の鈴木和志さんにお願いしました。…

国連番号(UN番号)

危険な化学品を飛行機や船を使って輸送することは、現代では日常的に行われていることである。安全に化学品…

Chem-Station Twitter

PAGE TOP