[スポンサーリンク]

化学者のつぶやき

プロペランの真ん中

結合を制する者は化学を制する!

 

とは言い過ぎかもしれませんが、電子軌道や周期表に記載されているような元素の基本的性質を極めて奥深く理解できていると、既知・未知問わず、あらゆる有機・無機化合物の性質を、ある程度は予測することが可能だと思います。

ところが常に例外はあるもので、普段見せない原子の変わった性質を知っておくことも、きっと何らかの形で、研究の役に立つと思います。

という訳で、理論計算により提案されたちょっと変わったC-C結合に関する論文を紹介したいと思います。

原子間の結合と言えば、共有結合、イオン結合、金属結合、水素結合などなど、いろいろ思い浮かぶことと思います。

それでは、[1.1.1]プロペラン[1]の中心炭素間の結合は、何結合だと皆さんは思いますか???

 

rei1000.gif橋頭位の炭素を通常のsp3炭素として考えると、明らかに軌道が反転しなければ結合が形成できない骨格をしていますが、このC-C原子間距離は1.6Å(X線構造解析結果ではありません)と見積もられており[2]、これはC-C単結合として妥当な距離です。

今回、Wu、Shaik、Hibertyらは、VB(ab initio valence bond)計算を用いてこの反転結合の性質にアプローチした論文[3]を報告しています。

 

結論から言うと、共有結合とイオン結合双方の性質を兼ね備えた「電荷シフト結合」である、と述べられています。

簡単に説明すると、電荷シフト結合とは、

・二つの原子が1電子ずつ出し合って形成している(共有結合)

・その2電子は二原子間の中心ではなく、より原子に近いところに分布している(イオン結合)

とのこと。・・・・・・・・なんのこっちゃ。

 

その結果、がっちり握手!で結合しているわけではなく、指先同士が触れる直前のような結合になっているそうです(下図)。 

rei2000.gifまた、実はフッ素(F2)もこのタイプの結合をしているようで(上図右下参照:論文[4]より)、なるほど、ハロゲンのラジカル的性質が高い理由もなんとなく分かる気がしますね。以前発表された論文[4] によると、塩素(Cl2)や臭素(Br2)だけではなく、ヒドラジン(H2N-NH2)やジオキシダン(HO-OH)も電荷シフト結合だと結論されてます。そこでは孤立電子対との反発も、このような結合の理由の一つとして挙げられていましたが、プロペランのように、特異な構造を持つことでも同様の結合様式を取るのは興味深いですね。

 

電荷反発や骨格の歪みを上回るほど、二つのラジカルの結合性相互作用が強いってことでしょう。

 

う~~ん、単結合の底力を感じます。

 

今回発表されたプロペランに関する論文はC&EN NEWS [5] にも取り上げられており、新しい結合様式や機能を持つ化合物の設計や開発に、いつの日か貢献することと期待してます。

関連文献

[1] K. B. Wiberg*, F. H. Walker, J. Am. Chem. Soc. 1982, 104, 5239-5240.
[2] K. B. Wiberg,* W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Cracker, M. Newton* J. Am. Chem. Soc. 1985, 107, 7241-7251.
[3] W. Wu,* J. Gu, J. Song, S. Shaik,* P. C. Hiberty*  Angew. Chem. Int. Ed. 2009, 48, 1407-1410.
[4] S. Shaik,* D. Danovich, B. Silvi,* D. L. Lauvergnat, P. C. Hiberty*, Chem. Eur. J. 2005, 11, 6358 – 6371.
[5] C&ENEWS May 11, 2009 Volume 87, Number 19 pp. 32-33.

関連リンク

ネーミングいろいろ (有機化学美術館)

Propellane – Wikipedia

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 海洋天然物パラウアミンの全合成
  2. バイオタージ Isolera: フラッシュ自動精製装置がSPEE…
  3. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  4. 【読者特典】第92回日本化学会付設展示会を楽しもう!
  5. 専門用語豊富なシソーラス付き辞書!JAICI Science D…
  6. ホウ素から糖に手渡される宅配便
  7. 尿はハチ刺されに効くか 学研シリーズの回顧
  8. 工業製品コストはどのように決まる?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 塩谷光彦 Mitsuhiko Shionoya
  2. キレトロピー反応 Cheletropic Reaction
  3. 2012年ケムステ人気記事ランキング
  4. 銅触媒と可視光が促進させる不斉四置換炭素構築型C-Nカップリング反応
  5. 室内照明で部屋をきれいに 汚れ防ぐ物質「光触媒」を高度化
  6. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  7. イナミドを縮合剤とする新規アミド形成法
  8. 3-ベンジル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムクロリド / 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium Chloride
  9. 昭和電工、青色LEDに参入
  10. デヴィッド・レイ David A. Leigh

関連商品

注目情報

注目情報

最新記事

磯部 寛之 Hiroyuki Isobe

磯部寛之(いそべひろゆき、1970年11月9日–東京都生まれ)は日本の有機化学者である。東京大学理学…

死海付近で臭素が漏洩

イスラエル警察は死海付近の向上から臭素が漏れだしたことを明らかにし、付近住民に自宅にとどまるよう呼び…

光触媒反応用途の青色LED光源を比較してみた

巷で大流行の可視光レドックス触媒反応ですが、筆者のラボでも活用するようになりました。しかし経…

宮沢賢治の元素図鑑

概要本書は宮沢賢治の作品に登場する元素を取り上げ、作品を入り口として各元素について解説した書…

電子豊富芳香環に対する触媒的芳香族求核置換反応

2017年、ノースカロライナ大学チャペルヒル校・David Nicewiczらは、可視光レドックス触…

毛染めでのアレルギー大幅低減へ ~日華化学がヘアカラー用染料開発~

日華化学(本社福井県福井市、江守康昌社長)は、髪へのダメージや頭皮への刺激がなく、アレルギーのリスク…

Chem-Station Twitter

PAGE TOP