[スポンサーリンク]

化学者のつぶやき

プロペランの真ん中

[スポンサーリンク]

結合を制する者は化学を制する!

 

とは言い過ぎかもしれませんが、電子軌道や周期表に記載されているような元素の基本的性質を極めて奥深く理解できていると、既知・未知問わず、あらゆる有機・無機化合物の性質を、ある程度は予測することが可能だと思います。

ところが常に例外はあるもので、普段見せない原子の変わった性質を知っておくことも、きっと何らかの形で、研究の役に立つと思います。

という訳で、理論計算により提案されたちょっと変わったC-C結合に関する論文を紹介したいと思います。

原子間の結合と言えば、共有結合、イオン結合、金属結合、水素結合などなど、いろいろ思い浮かぶことと思います。

それでは、[1.1.1]プロペラン[1]の中心炭素間の結合は、何結合だと皆さんは思いますか???

 

rei1000.gif橋頭位の炭素を通常のsp3炭素として考えると、明らかに軌道が反転しなければ結合が形成できない骨格をしていますが、このC-C原子間距離は1.6Å(X線構造解析結果ではありません)と見積もられており[2]、これはC-C単結合として妥当な距離です。

今回、Wu、Shaik、Hibertyらは、VB(ab initio valence bond)計算を用いてこの反転結合の性質にアプローチした論文[3]を報告しています。

 

結論から言うと、共有結合とイオン結合双方の性質を兼ね備えた「電荷シフト結合」である、と述べられています。

簡単に説明すると、電荷シフト結合とは、

・二つの原子が1電子ずつ出し合って形成している(共有結合)

・その2電子は二原子間の中心ではなく、より原子に近いところに分布している(イオン結合)

とのこと。・・・・・・・・なんのこっちゃ。

 

その結果、がっちり握手!で結合しているわけではなく、指先同士が触れる直前のような結合になっているそうです(下図)。 

rei2000.gifまた、実はフッ素(F2)もこのタイプの結合をしているようで(上図右下参照:論文[4]より)、なるほど、ハロゲンのラジカル的性質が高い理由もなんとなく分かる気がしますね。以前発表された論文[4] によると、塩素(Cl2)や臭素(Br2)だけではなく、ヒドラジン(H2N-NH2)やジオキシダン(HO-OH)も電荷シフト結合だと結論されてます。そこでは孤立電子対との反発も、このような結合の理由の一つとして挙げられていましたが、プロペランのように、特異な構造を持つことでも同様の結合様式を取るのは興味深いですね。

 

電荷反発や骨格の歪みを上回るほど、二つのラジカルの結合性相互作用が強いってことでしょう。

 

う~~ん、単結合の底力を感じます。

 

今回発表されたプロペランに関する論文はC&EN NEWS [5] にも取り上げられており、新しい結合様式や機能を持つ化合物の設計や開発に、いつの日か貢献することと期待してます。

関連文献

[1] K. B. Wiberg*, F. H. Walker, J. Am. Chem. Soc. 1982, 104, 5239-5240.
[2] K. B. Wiberg,* W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Cracker, M. Newton* J. Am. Chem. Soc. 1985, 107, 7241-7251.
[3] W. Wu,* J. Gu, J. Song, S. Shaik,* P. C. Hiberty*  Angew. Chem. Int. Ed. 2009, 48, 1407-1410.
[4] S. Shaik,* D. Danovich, B. Silvi,* D. L. Lauvergnat, P. C. Hiberty*, Chem. Eur. J. 2005, 11, 6358 – 6371.
[5] C&ENEWS May 11, 2009 Volume 87, Number 19 pp. 32-33.

関連リンク

ネーミングいろいろ (有機化学美術館)

Propellane – Wikipedia

関連記事

  1. 【23卒】太陽HD研究開発4daysインターン
  2. 第10回次世代を担う有機化学シンポジウムに参加してきました
  3. 結晶データの登録・検索サービス(Access Structure…
  4. 無保護アミン類の直接的合成
  5. 科学部をもっと増やそうよ
  6. 地域の光る化学企業たち-2
  7. 世界が終わる日までビスマス
  8. 第4回慶應有機化学若手シンポジウム

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 三洋化成の新分野への挑戦
  2. 「さくら、さくら」劇場鑑賞券プレゼント結果発表!
  3. 論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!
  4. Communications Chemistry創刊!:ネイチャー・リサーチ提供の新しい化学ジャーナル
  5. 向山縮合試薬 Mukaiyama Condensation Reagent
  6. 速報・常温常圧反応によるアンモニア合成の実現について
  7. テッド・ベグリーTadhg P. Begley
  8. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士
  9. 高分子学会年次大会 「合成するぞ!」Tシャツキャンペーン
  10. いつ、どこで体内に 放射性物質に深まる謎

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2009年10月
« 9月   11月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

KISTECおもちゃレスキュー こども救急隊・こども鑑識隊

おもちゃレスキューに君も入隊しよう!大事なおもちゃがこわれたら、どうしますか? …

ポンコツ博士研究員の海外奮闘録 〜コロナモラトリアム編〜

事実は小説より奇なり。「博士系なろう」という新ジャンルの開拓を目指し,博士を経て得られた文章力を全力…

乙卯研究所 研究員募集

公益財団法人乙卯研究所から研究員募集のお知らせです。自分自身でテーマを決めて好きな有機化学の研究…

SNSコンテスト企画『集まれ、みんなのラボのDIY!』

先日公開されたこちらのケムステ記事と動画、皆さんご覧になって頂けましたでしょうか?https…

可視光レドックス触媒と有機蓄光の融合 〜大気安定かつ高性能な有機蓄光の実現〜

第351回のスポットライトリサーチは、九州大学 安達・中野谷研究室 で研究をされていた陣内 和哉さん…

可視光全域を利用できるレドックス光増感剤

東京工業大学 理学院 化学系の玉置悠祐助教、入倉茉里大学院生および石谷治教授は、新たに合成したオスミ…

【ジーシー】新卒採用情報(2023卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

有機合成のための新触媒反応101

(さらに…)…

化学者のためのエレクトロニクス講座~電解ニッケルめっき編~

この化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレク…

その病気、市販薬で治せます

(さらに…)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP