[スポンサーリンク]

化学者のつぶやき

グラム陰性菌を爆沈!!Darobactin Aの全合成

[スポンサーリンク]

グラム陰性菌に有効な抗生物質であるdarobactin Aの初の全合成が報告された。Larockインドール合成により2つのマクロ環を順に環化し、課題であったアトロプ選択性を発現させる合成戦略が本合成の鍵である。

Darobactin Aの合成

 薬剤耐性菌は人類の脅威である。特にグラム陰性菌は薬剤の侵入を阻む細胞外膜をもつため、薬剤耐性を示す細菌が多い。そのため、広範なグラム陰性菌に対して有効な新規抗生物質の探索・開発が盛んに研究されている。2019年、LewisらはPhotorhabdus微生物群から新規抗生物質としてdarobactin A(1)を単離した[1]1は広範なグラム陰性菌に選択的に作用し、グラム陽性菌には抗菌活性を示さない。1は外膜表面の膜タンパク質BamAに結合し、外膜タンパク質(OMP)の折りたたみを妨げることが明らかにされた(図1A)[2]。グラム陰性菌に対するこのような作用機序は前例がなく、1を有機合成により量的供給できれば薬剤耐性をもつグラム陰性菌に対する抗生物質の創薬研究を促進できる。1は、15員環および14員環の二環式ペプチド骨格を有し、その環上に2つのインドール部位をもつ。このインドール部位の高い平面性から、この2つのマクロ環は歪んでいる。さらに、この2つのインドール部位は回転障壁が高くアトロプ異性体が存在する。すなわち、1の全合成において、アトロプ選択性を制御しつつこれら2つの大員環をいかに構築するかが課題となる。

 今回、イリノイ大学のSarlahとMerckの合同チームは1の初の全合成を報告した。著者らは4つのフラグメント25から1を構築する合成戦略を立てた(図1B)。これらのフラグメントをペプチドカップリングによって連結し、課題の大員環をLarockインドール合成法によって構築することで、16工程(最長直線工程)でアトロプ選択的に1の合成を完了した。なお、同時期にスクリプス研究所のBaranらも同様にLarockインドール合成を駆使して1の全合成を報告した[3]

図1. (A) Darobactin AのBamAに対する作用機序(参考文献より抜粋) (B) Darobactin Aの構造と鍵となるフラグメント

 

“Total Synthesis of Darobactin A”

Nesic, M.; Ryffel, D. B.; Maturano, J.; Shevlin, M.; Pollack, S. R.; Gauthier, D. R.; Trigo-Mouriño, P.; Zhang, L.-K.; Schultz, D. M.; McCabe Dunn, J. M.; Campeau, L.-C.; Patel, N. R.; Petrone, D. A.; Sarlah, D. J. Am. Chem. Soc. 2022, 144, 14026–14030. DOI:  10.1021/jacs.2c05891

論文著者の紹介

研究者:Niki R. Patel

研究者の経歴:

2006–2010 B.S. in Chemistry, Temple University, USA

2010–2015 Ph.D. in Chemistry, Lehigh University, USA (Prof. Robert Flowers)

2015–2017 Postdoc, University of Pennsylvania, USA (Prof. Gary A. Molander)

2017–        Senior scientist, Merck

研究内容:銀を用いた酸化反応の機構解明研究、生体触媒、天然物合成

研究者:David A. Petrone

研究者の経歴:

2006–2011 B.S. in Chemistry, University of Guelph, Canada

2011–2016 Ph.D. in Chemistry, University of Toronto, Canada (Prof. Mark Lautens)

2016–2019 Postdoc, ETH Zürich, Switzerland (Prof. Erick M. Carreira)

2019–2020 Postdoc, University of Toronto, Canada (Prof. Douglas W. Stephan)

2020–        Senior scientist, Merck

研究内容:遷移金属触媒を用いた反応開発、天然物合成

研究者:David Sarlah (研究室HP)

研究者の経歴:

2002–2006 B.S. in Chemistry, University of Ljubljana, Slovenia

2006–2011 Ph.D. in Chemistry, Scripps Research Institute, USA (Prof. K. C. Nicolaou)

2011–2014 Postdoc, ETH Zürich, Switzerland (Prof. Erick M. Carreira)

2014–2021 Assistant Professor, University of Illinois, USA

2021–    Associate Professor, University of Illinois, USA

研究内容:天然物合成、合成方法論の開発

論文の概要

 著者らはまず、適切に保護されたアミノ酸同士のペプチドカップリング等を用いてフラグメント235を合成した(詳細は論文およびSI参照)。次にセリン誘導体6から4工程で7を得た。続いて、著者らは2つのマクロ環のアトロプ選択的な構築を目指した。Gloriusらが報告したRh触媒によるアセトアニリドのオルト位選択的ヨウ素化反応を7に適用することで、Cbz保護体8を合成した[4]8のCbz基をBBr3で除去したのち、3とのペプチドカップリングにより環化前駆体9へと導いた。続いて、鍵反応である9Larockインドール合成による環化反応を検討した。アトロプ選択的な大員環構築に加え、9が臭化アリールをもつためヨウ化アリール選択的な反応条件が求められる。検討の結果、比較的低温(40 °C)でLarockインドール合成条件に9を付したところ、化学選択的に反応が進行し10およびatrop-10が3:1の生成比で得られた。図2に示すようにアルキンがパラジウムに挿入するとき、より歪みの小さい立体配座をとって環化することでアトロプ選択性が発現したと考えられている(論文SI参照)。10から化学選択的な脱保護と5および2とのペプチドカップリングを経てヘプタペプチド11を得た。次に、2度目のLarockインドール合成により15員環を形成し、11を二環式ペプチド12へと導いた。最後に、12の保護基を除去することで1の全合成を達成した。

図2.Darobactin Aの合成経路

 

以上、Larockインドール合成を駆使してアトロプ選択的にdarobactin Aの全合成を達成した。さすがのグラム陰性菌も、本研究の鮮やかな合成戦略そしてdarobactin Aの見事な爆沈機構に驚きの目を隠せないdaro?

参考文献

  1. Imai, Y.; Meyer, K. J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; Honrao, C.; Ma, X.; Guo, J. J.; Makriyannis, A.; Linares-Otoya, L.; Böhringer, N.; Wuisan, Z. G.; Kaur, H.; Wu, R.; Mateus, A.; Typas, A.; Savitski, M. M.; Espinoza, J. L.; O’Rourke, A.; Nelson, K. E.; Hiller, S.; Noinaj, N.; Schäberle, T. F.; D’Onofrio, A.; Lewis, K. A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature 2019,576, 459–464. DOI: 1038/s41586-019-1791-1
  2. Kaur, H.; Jakob, R. P.; Marzinek, J. K.; Green, R.; Imai, Y.; Bolla, J. R.; Agustoni, E.; Robinson, C. V.; Bond, P. J.; Lewis, K.; Maier, T.; Hiller, S. The Antibiotic Darobactin Mimics a β-Strand to Inhibit Outer Membrane Insertase. Nature 2021, 593, 125–129. DOI: 1038/s41586-021-03455-w
  3. Lin, Y.-C.; Schneider, F.; Eberle, K. J.; Chiodi, D.; Nakamura, H.; Reisberg, S. H.; Chen, J.; Saito, M.; Baran, P. S. Atroposelective Total Synthesis of Darobactin A. J. Am. Chem. Soc. 2022, 144, 14458–14462. DOI: 10.1021/jacs.2c05892
  4. Schröder, N.; Wencel-Delord, J.; Glorius, F. High-Yielding, Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination and Iodination of Arenes. J. Am. Chem. Soc. 2012, 134, 8298–8301. DOI: 1021/ja302631j

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. varietyの使い方
  2. 『主鎖むき出し』の芳香族ポリマーの合成に成功 ~長年…
  3. Reaxysレクチャー&第9回平田メモリアルレクチャー…
  4. 「同時多発研究」再び!ラジカル反応を用いたタンパク質の翻訳後修飾…
  5. 力をかけると塩酸が放出される高分子材料
  6. 239th ACS National Meeting に行ってき…
  7. 若手研究者vsノーベル賞受賞者 【化学者とは?!編】
  8. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士
  2. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」
  3. 免疫応答のシグナル伝達を遮断する新規な免疫抑制剤CPYPP
  4. 中谷宇吉郎 雪の科学館
  5. シラン Silane
  6. 三井化学、出光興産と有機EL材料の協業体制構築で合意
  7. カルボン酸だけを触媒的にエノラート化する
  8. 化学遺産スロイス『舎密学』とグリフィス『化学筆記』が展示へ
  9. 化学の楽しさに触れるセミナーが7月に開催
  10. 第47回天然有機化合物討論会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

注目情報

最新記事

熱化学電池の蘊奥を開く-熱を電気に変える電解液の予測設計に道-

第448回のスポットライトリサーチは、東京工業大学 工学院 機械系 機械コース 村上陽一研究室の長 …

毎年恒例のマニアックなスケジュール帳:元素手帳2023

hodaです。去年もケムステで紹介されていた元素手帳2022ですが、2023年バージョンも発…

二刀流センサーで細胞を光らせろ!― 合成分子でタンパク質の蛍光を制御する化学遺伝学センサーの開発 ―

第447回のスポットライトリサーチは、東京大学大学院 理学系研究科化学専攻 生体分子化学研究室(キャ…

【12月開催】第4回 マツモトファインケミカル技術セミナー有機金属化合物「オルガチックス」の触媒としての利用-ウレタン化触媒としての利用-

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合…

化学ゆるキャラ大集合

企業PRの手段の一つとして、キャラクターを作りホームページやSNSで登場させることがよく行われていま…

最先端バイオエコノミー社会を実現する合成生物学【対面講座】

開講期間2022年12月12日(月)13:00~16:202022年12月13日(火)1…

複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成

第446回のスポットライトリサーチは、北海道大学 大学院工学研究院 応用化学部門 高分子化学研究室(…

河崎 悠也 Yuuya Kawasaki

河崎 悠也 (かわさき ゆうや) は、日本の有機化学者。九州大学先導物質化学研究所 …

研究者1名からでも始められるMIの検討-スモールスタートに取り組む前の3つのステップ-

開催日:2022/12/07  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

吉田 優 Suguru Yoshida

 吉田 優(よしだ すぐる)は、日本の化学者。専門は、有機合成化学、ケミカルバイオロジー。2…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP