[スポンサーリンク]

化学者のつぶやき

鍛冶屋はなぜ「鉄を熱いうちに」打つのか?

 

 

鉄は熱いうちに打て

時は昔、さすらいの侍は厳しい修行の後、 すこしでも良い名刀を手にするために職人のところに向かった。

そこには頑固で人とほとんど喋らない背中を丸めた初老の男性がひたすら熱した刀を叩いていた…

 

こんな場面、時代劇なんかでよくみませんか? さて、なぜこの職人は刀をたたいているのでしょう?

言葉を変えればことわざになっている「鉄は熱いうちに打て」。これはなんでなのでしょう?

実はこのことわざには、最先端ナノテクノロジーが隠されていたのです。そして2011年のノーベル化学賞のテーマである準結晶もすこし絡んできます。

そんな訳で2009年のScienceからある論文を紹介しようと思います。

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Lu, K.; Lu, L.; Suresh, S Science 2009, 324, 350.  DOI: 10.1126/science.1159610

“固いもの“を作るというのはマテリアルエンジニアリングの最高峰の課題です。磨耗してしまう部位に必要な材料や、壊れて欲しくない部分など、硬ければ硬いほど良いものというのは世の中に沢山あります。

ただし、硬ければ何でも良いというのでは違います。硬さが必要な部分にすべてダイヤモンドを敷き詰めれば事が足りるかというとそういう訳ではありません。つまり手持ちの材料(例えばある金属など)を”エンジニアリング”することによって強度を増すような、そのような指針があることが求められています。

それではどのような状態が硬さを得る上で重要なのでしょうか?このReviewはそのことに関する研究がまとめられた記事です。

 

Untitled.png

(文献より引用)

正解は金属内の結晶サイズをナノサイズにすることです。金属内の結晶が小さければ小さいほど、かかる力が結晶の”境界”に逃げ、結晶そのものに直接負荷がかからなくなり、その結果”強靭な”マテリアルができます(Hall-Petch効果)。油揚げを冷凍庫に入れたものが、普通の柔らかい油揚げよりも簡単に割れる。論理を何段階か無視して極めて雑に説明すると、そういうものと同じような理屈です。

つまりあの刀職人の鍛冶屋さんは、 鉄が熱いうちに刀の中の金属の結晶のドメインを小さくするために、外部から衝撃を与えていたのです(※)。おそらく手練の鍛冶屋なんかは然るべき強さ、方向から鉄を打つことによって、かなり良い感じの結晶サイズをそのなかに作っているということなのでしょう。

ここで少し個人的な感想なのですが、こういう伝統技術は、科学的裏付けがなかった時分、一体どうやって培われていったのだろうと感心します。今までの人間の練習や研究のような営みに対して尊敬するし、これからもいままで感覚として捉えられていたものが「科学」という言語で読み解かれていくのだろうし、そして現代の“伝統技術の継承者“である我ら化学者がこれらの技術を次の次元にいけるようにしていかなくてはなぁと素直に思うのです。

そんな文脈で準結晶の存在が注目されます。有機化学美術館でもすこし触れられていますが、準結晶には硬いマテリアルとして期待がかかっていたことがあったようです。これはおそらく、この結晶面が直線的ではないために、力がどこかひとつに入らず、分散することによって、”折れない””硬い”マテリアルの開発が期待されていたのでしょう。

しかし素の準結晶自体が結晶内の結合レベルであまりに脆いものしか見つかっていないため、硬いものを作るという方向での研究は頓挫してしまっているものと思われます。

現在は主にこういうナノドメインな金属は、メカニカルミリングなどのトップダウン(つまり大きい物を小さくしていくアプローチ)によって達成されるものが主流なようです[1]。ボトムアップ型(つまり小さいものを集めて大きくしていくアプローチ)ではコントロールされた電着による方法なんかが提唱されています[2]。しかしやはり化学者たるものがっちりビルディングブロックを使ったボトムアップ型の方法で勝負したいもの。ごく最近Cornell大学、ニューヨーク州立大学のグループが、ナノパーティクル自体にHall-Petch効果があることなんかも報告していて[3]、この分野からはいろいろと新しいものが見つかるにほひがします。

(※)追記

本文で用いた”強さ”という表現は強度と延性が優れているものを意味しており、このことはいわゆる「ナノメタル系」で達成されるもので、実際の刀の中にも観察される重要な特徴であるものです。叩くというプロセス(鍛造)はこの微細構造を作るにあたり重要なステップということは言えると思います。

ただし実際の日本刀の制作には非常に多くのステップがあり、叩けば硬くなるというような単純化されたものではありません。さらに鍛造には成形という大きな役割もあります。また使われている鉄は主に炭素との合金になっているもので、当然その比率も合金の硬さや結晶性を決めます。

追加参考サイト
刀鍛冶 宗近兵衛 (http://www.katanakazi.com/newpage164.html)
日本刀の刀身構造    (http://www.k3.dion.ne.jp/~j-gunto/gunto_051.htm)

  • 参考文献
[1] 新エネルギー・産業技術総合開発機構 公開報告書 平成15年3月“ナノ組織制御による超高強度化・高耐食工具鋼の研究開発“ http://mandala.t.u-tokyo.ac.jp/~project/DB/reports/tatepj/metal/H14/H14m2.pdf

[2] Lu, L.; Chen, X.;  Huang, X.; Lu. K. Science 2009, 323, 607 DOI: 10.1126/science.1167641

[3] Quan, Z.;  Wang, Y.;  Bae, I-T.;  Loc, W. S.; Wang, C.;  Wang, Z.  Fang, J Nano Letters 2011, ASAP. DOI: 10.1021/nl203409s

関連記事

  1. 構造式を美しく書くために【準備編】
  2. シェールガスにかかわる化学物質について
  3. シンガポールへ行ってきた:NTUとNUS化学科訪問
  4. PACIFICHEM2010に参加してきました!Final!
  5. 生化学実験:プラスチック器具のコンタミにご用心
  6. エチレンを離して!
  7. 投票!2017年ノーベル化学賞は誰の手に!?
  8. 論文の自己剽窃は推奨されるべき?

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 「Natureダイジェスト」で化学の見識を広めよう!
  2. その電子、私が引き受けよう
  3. 投票!2016年ノーベル化学賞は誰の手に??
  4. “マイクロプラスチック”が海をただよう その1
  5. 鉄触媒での鈴木-宮浦クロスカップリングが実現!
  6. M.G.フィン M. G. Finn
  7. アミドをエステルに変化させる触媒
  8. 犬の「肥満治療薬」を認可=米食品医薬品局
  9. 免疫/アレルギーーChemical Times特集より
  10. 製薬特許売買市場、ネットに創設へ…大商とUFJ信託

関連商品

注目情報

注目情報

最新記事

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

Chem-Station Twitter

PAGE TOP