[スポンサーリンク]

化学者のつぶやき

鍛冶屋はなぜ「鉄を熱いうちに」打つのか?

[スポンサーリンク]

 

 

鉄は熱いうちに打て

時は昔、さすらいの侍は厳しい修行の後、 すこしでも良い名刀を手にするために職人のところに向かった。

そこには頑固で人とほとんど喋らない背中を丸めた初老の男性がひたすら熱した刀を叩いていた…

 

こんな場面、時代劇なんかでよくみませんか? さて、なぜこの職人は刀をたたいているのでしょう?

言葉を変えればことわざになっている「鉄は熱いうちに打て」。これはなんでなのでしょう?

実はこのことわざには、最先端ナノテクノロジーが隠されていたのです。そして2011年のノーベル化学賞のテーマである準結晶もすこし絡んできます。

そんな訳で2009年のScienceからある論文を紹介しようと思います。

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

Lu, K.; Lu, L.; Suresh, S Science 2009, 324, 350.  DOI: 10.1126/science.1159610

“固いもの“を作るというのはマテリアルエンジニアリングの最高峰の課題です。磨耗してしまう部位に必要な材料や、壊れて欲しくない部分など、硬ければ硬いほど良いものというのは世の中に沢山あります。

ただし、硬ければ何でも良いというのでは違います。硬さが必要な部分にすべてダイヤモンドを敷き詰めれば事が足りるかというとそういう訳ではありません。つまり手持ちの材料(例えばある金属など)を”エンジニアリング”することによって強度を増すような、そのような指針があることが求められています。

それではどのような状態が硬さを得る上で重要なのでしょうか?このReviewはそのことに関する研究がまとめられた記事です。

 

Untitled.png

(文献より引用)

正解は金属内の結晶サイズをナノサイズにすることです。金属内の結晶が小さければ小さいほど、かかる力が結晶の”境界”に逃げ、結晶そのものに直接負荷がかからなくなり、その結果”強靭な”マテリアルができます(Hall-Petch効果)。油揚げを冷凍庫に入れたものが、普通の柔らかい油揚げよりも簡単に割れる。論理を何段階か無視して極めて雑に説明すると、そういうものと同じような理屈です。

つまりあの刀職人の鍛冶屋さんは、 鉄が熱いうちに刀の中の金属の結晶のドメインを小さくするために、外部から衝撃を与えていたのです(※)。おそらく手練の鍛冶屋なんかは然るべき強さ、方向から鉄を打つことによって、かなり良い感じの結晶サイズをそのなかに作っているということなのでしょう。

ここで少し個人的な感想なのですが、こういう伝統技術は、科学的裏付けがなかった時分、一体どうやって培われていったのだろうと感心します。今までの人間の練習や研究のような営みに対して尊敬するし、これからもいままで感覚として捉えられていたものが「科学」という言語で読み解かれていくのだろうし、そして現代の“伝統技術の継承者“である我ら化学者がこれらの技術を次の次元にいけるようにしていかなくてはなぁと素直に思うのです。

そんな文脈で準結晶の存在が注目されます。有機化学美術館でもすこし触れられていますが、準結晶には硬いマテリアルとして期待がかかっていたことがあったようです。これはおそらく、この結晶面が直線的ではないために、力がどこかひとつに入らず、分散することによって、”折れない””硬い”マテリアルの開発が期待されていたのでしょう。

しかし素の準結晶自体が結晶内の結合レベルであまりに脆いものしか見つかっていないため、硬いものを作るという方向での研究は頓挫してしまっているものと思われます。

現在は主にこういうナノドメインな金属は、メカニカルミリングなどのトップダウン(つまり大きい物を小さくしていくアプローチ)によって達成されるものが主流なようです[1]。ボトムアップ型(つまり小さいものを集めて大きくしていくアプローチ)ではコントロールされた電着による方法なんかが提唱されています[2]。しかしやはり化学者たるものがっちりビルディングブロックを使ったボトムアップ型の方法で勝負したいもの。ごく最近Cornell大学、ニューヨーク州立大学のグループが、ナノパーティクル自体にHall-Petch効果があることなんかも報告していて[3]、この分野からはいろいろと新しいものが見つかるにほひがします。

(※)追記

本文で用いた”強さ”という表現は強度と延性が優れているものを意味しており、このことはいわゆる「ナノメタル系」で達成されるもので、実際の刀の中にも観察される重要な特徴であるものです。叩くというプロセス(鍛造)はこの微細構造を作るにあたり重要なステップということは言えると思います。

ただし実際の日本刀の制作には非常に多くのステップがあり、叩けば硬くなるというような単純化されたものではありません。さらに鍛造には成形という大きな役割もあります。また使われている鉄は主に炭素との合金になっているもので、当然その比率も合金の硬さや結晶性を決めます。

追加参考サイト
刀鍛冶 宗近兵衛 (http://www.katanakazi.com/newpage164.html)
日本刀の刀身構造    (http://www.k3.dion.ne.jp/~j-gunto/gunto_051.htm)

  • 参考文献
[1] 新エネルギー・産業技術総合開発機構 公開報告書 平成15年3月“ナノ組織制御による超高強度化・高耐食工具鋼の研究開発“ http://mandala.t.u-tokyo.ac.jp/~project/DB/reports/tatepj/metal/H14/H14m2.pdf

[2] Lu, L.; Chen, X.;  Huang, X.; Lu. K. Science 2009, 323, 607 DOI: 10.1126/science.1167641

[3] Quan, Z.;  Wang, Y.;  Bae, I-T.;  Loc, W. S.; Wang, C.;  Wang, Z.  Fang, J Nano Letters 2011, ASAP. DOI: 10.1021/nl203409s

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 高分子のらせん構造を自在にあやつる -溶媒が支配する右巻き/左巻…
  2. リアルタイムで分子の自己組織化を観察・操作することに成功
  3. MSI.TOKYO「MULTUM-FAB」:TLC感覚でFAB-…
  4. 文献管理ソフトを徹底比較!
  5. SciFinder Future Leaders in Chem…
  6. “関節技”でグリコシル化を極める!
  7. ポルフィリン化学100年の謎を解明:calix[3]pyrrol…
  8. 親子で楽しめる化学映像集 その1

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第45回―「ナノ材料の設計と合成、デバイスの医療応用」Younan Xia教授
  2. クレイグ・ヴェンター J. Craig Venter
  3. 論文投稿・出版に役立つ! 10の記事
  4. ギンコライド ginkgolide
  5. 関東化学2019年採用情報
  6. 私達の時間スケールでみても、ガラスは固体ではなかった − 7年前に分からなかった問題を解決 −
  7. ニック・ホロニアック Nicholas Holonyak, Jr.
  8. 東海カーボンと三菱化学、カーボンブラックの共同会社を断念
  9. “Wisconsin Process”について ~低コスト硝酸合成法の一幕~
  10. アスタチンを薬に使う!?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2011年11月
« 10月   12月 »
 123456
78910111213
14151617181920
21222324252627
282930  

注目情報

注目情報

最新記事

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法

みなさんは毎年何本の研究申請書を書きますか?そして、残念ながら日の目を見ずに、アイデアのままパソコン…

フラーレン〜ケージを拡張、時々、内包〜

トリアジン誘導体とN-フェニルマレイミドを用いた、フラーレンのケージを拡張する新規手法が開発された。…

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前、手塚治虫氏の作品「ブラック・ジャック」でこういう話が載ってい…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP