[スポンサーリンク]

化学者のつぶやき

触媒がいざなう加速世界へのバックドア

[スポンサーリンク]

反応を加速する、と言えば、触媒。思い通りの方向にだけ、反応を加速し、作りたいものを作る、というのが、触媒の上手な使い方です。

最近になって、表口か裏口か、くぼみへの進入方法によって、反応の生成物を作りかえる、ちょっと変わった触媒が作られています[1] リボザイムのくぼみに秘められた アクセル ワールドのからくりや いかに!?

Catalyser「もっと先へ……加速したくはないか、少年」

有機合成に用いる金属配位化合物から、天然の酵素タンパク質まで、望みの方向に反応を制御し、欲しいものだけを作り出したい場面で、触媒は活躍してきました。このうち、酵素タンパク質のような高分子の触媒は、それぞれ特有の立体構造を持ち、標的となる基質はちょうどくぼみに入り込んだかたちになります。くぼみへのくっつき方が決まっているからこそ、反応の生成物が決まったものになるのです。立体的な三次元のかたちが、物質の作り分けに重要なことは、酵素タンパク質が活躍する生合成だけではなく、フラスコの中で行われる化学合成でも同じです。

酵素タンパク質と同じく、触媒活性を持ったRNAを、リボザイムと呼びます。限定的ですが、リボザイムはわたしたちの細胞の中でも機能しています。リボザイムは天然のものが存在する一方、RNAのような核酸のなかまは、配列から立体構造を制御しやいため、ユニークな機能を持たせた人工のリボザイムがいくつも開発されています。リボザイムでも、立体構造のくぼみが重要になる点は同様です。

GREEN0005311.png

通常の入口とは異なる「バックドア」を持ったリボザイム



この記事で紹介するリボザイムは、ディールス・アルダー反応(Diels Alder reaction)の触媒活性を持ちます。天然物合成etc.で、立体制御下に環構築したい場合、第一に検討の候補にあがるアレです。

GREEN0005313.png

単純な基質の場合

 

ベンゼン環が3つ並んだアントラセンの一端に、かさたかい置換基を導入すると、表口からくぼみに入って、反応が進行します。かさたかい置換基による立体制御は、低分子の有機合成でもおなじみの方法です。

GREEN0005314.png

説明のため論文[1]を改変

 

ここからがRNAらしい面白いところ。目的のディールス・アルダー反応を仕込む前に、RNAに基質の一方を固定するというトリッキーな方法を適用します。RNAにしてみれば、基質で化学修飾されたかたちになります。表口とは異なるもう一方の小さな裏口の近くに基質を固定すると、基質は裏口からくぼみに入った向きとなり、反応が進行しました。そして、表口の場合とは別の立体化学を持ったまったく異なる物質が生成しました。

GREEN0005315.png

説明のため論文[1]を改変

この場合、リボザイムは後から切断できるので、順序よく反応を仕込めば、どちらの立体異性体も合成できます。手品のようなユニークな反応例でしたが、触媒の世界に未踏の可能性が感じられる話題でした。

 

参考文献

[1] バックドアから近づくことによりリボザイムの触媒反応で立体選択制御
“Control of Stereoselectivity in an Enzymatic Reaction by Backdoor Access”
Richard Wombacher et al. Angew. Chem. Int. Ed. 2006 DOI: 10.1002/anie.200503280

[2] 炭素間結合を触媒するディールスアルダーリボザイムの構造基盤
“Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation”
Alexander Serganov et al. Nature Structural and Molecular Biology 2005 DOI: 10.1038/nsmb906

[3] ディールズアルダーリボザイムの触媒活性を決める3つの水素結合
“Three critical hydrogen bonds determine the catalytic activity of the Diels–Alderase ribozyme”
Stefanie Kraut et al. Nucleic Acids Research 2012 DOI: 10.1093/nar/gkr812  

 

関連書籍

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 図に最適なフォントは何か?
  2. 創薬・医療系ベンチャー支援プログラム”BlockbusterTO…
  3. 生物発光のスイッチ制御でイメージング
  4. フッ素のチカラで光学分割!?〜配向基はじめました〜
  5. 今年の光学活性化合物シンポジウム
  6. クリスマス化学史 元素記号Hの発見
  7. 理化学機器のリユースマーケット「ZAI」
  8. 巻いている触媒を用いて環を巻く

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 水素化ホウ素亜鉛 Zinc Bodohydride
  2. ポリエチレンテレフタレートの常温解重合法を開発
  3. マルコ・ラム脱酸素化 Marko-Lam Deoxygenation
  4. AIによる創薬に新たな可能性 その研究と最新技術に迫る ~米・Insitro社 / 英・ケンブリッジ大学の研究から~
  5. フリーラジカルの祖は一体誰か?
  6. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  7. 大日本インキ、中国・上海に全額出資の物流会社
  8. リンダウ島インセルホール
  9. 喜多氏新作小説!『美少女教授・桐島統子の事件研究録』
  10. Happy Mole Day to You !!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年5月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP