[スポンサーリンク]

化学者のつぶやき

カルボン酸、窒素をトスしてアミノ酸へ

[スポンサーリンク]

カルボン酸誘導体の不斉アミノ化によりキラルαアミノ酸の合成法が報告された。カルボン酸をヒドロキシルアミンと縮合後、ルテニウムもしくは鉄触媒によりアミン部位の特異な1,3-移動が進行する。

不斉C(sp3)–Hアミノ化

α-アミノ酸(非天然を含む)は、生物活性物質、機能性材料、医薬品など様々な分野で用いられるため、その簡便な不斉合成法開発の学術・産業的価値は極めて高い[1]。直截的な合成法として、入手容易なカルボン酸のカルボニルα位でのC–N結合形成が考えられる。実際に、カルボニル化合物の直接不斉アミノ化は多く報告されているが[2]、酸性度の低いカルボン酸を出発物質として用いたのはほとんどない(図 1A)[3]。また、適用可能なアミノ化剤は一般的にアゾ化合物である。したがって、それら反応で得た生成物をアミノ酸へと導くのは多工程に渡る上、困難である。
一方、ナイトレン挿入反応は触媒によって反応性、反応点を調整できる有用なC–Hアミノ化法である。分子内反応は確立されているものの、分子間反応はそのエナンチオ選択性に課題がある[4]。本論文著者のMeggersらは2019年、ナイトレン挿入反応によるアジド基をもつアセトアミドの不斉分子内アミノ化を報告した(図 1B)[5]。本反応では、著者らが得意とするChiral-at-Metal(Ru)錯体*1が不斉触媒として用いられた。アジドとRu錯体により生成したナイトレンがC–H結合と反応する。その際に、アセトアミドのアリール基と触媒のピリジンのp-p相互作用により立体配座が固定され、高エナンチオ選択的に反応が進行する。2020年、同様の触媒によりウレア誘導体の不斉分子内C–Hアミノ化にも成功した[6]。著者らはこの反応形式をカルボン酸の不斉アミノ化反応に適用できないかと考えた。試行錯誤の末、カルボン酸とヒドロキシルアミンの縮合体であるアザニルエステルを出発物質に用い、窒素原子を転位させる「分子内」不斉C–Hアミノ化を開発した(図 1C)。すなわち、アザニルエステルのN–O結合が開裂し、生じたナイトレンがカルボン酸のカルボニルα位のC–H結合に挿入することで反応が進行すると想定した。

図1. (A) カルボニル位の不斉アミノ化反応 (B) chiral-at-metal錯体を用いたナイトレン挿入反応 (C) 今回の研究

 

“Stereocontrolled 1,3-Nitrogen Migration to Access Chiral α-Amino Acids”
Ye, C. -X.; Shen, X.; Chen, S.; Meggers, E. Nat. Chem. 2022, 14, 566–573.
DOI: 10.1038/s41557-022-00895-3

論文著者の紹介

研究者:Eric Meggers 

研究内容: Chiral-at-Metal錯体を用いた不斉反応、キラルな光触媒を用いた不斉反応

研究者:Shuming Chen (陈 舒铭)

研究者の経歴:

2016    Ph. D., Yale University, USA (Prof. Jonathan A. Ellman)

2016–2019 Postdoc, University of California, Los Angeles, USA (Prof. Kendall N. Houk)

2020–     Assistant Professor, Oberlin College, USA

研究内容: 計算化学による反応機構の解明

 

論文の概要

著者らは、アザニルエステル1に対してジクロロメタン中、L-RuDMPと炭酸カリウムを作用させることで(R)-アミノ酸誘導体2が得られることを見いだした(図 2A)。例えば、フェニル基(2a)、アジド基(2b)をもつアザニルエステルを用いると良好な収率、エナンチオ過剰率で対応するアミノ酸誘導体を与えた。光学活性なa位二置換アザニルエステルも本反応に適用できた((s)-1c→(R)-2c)。また、(R,R)-FeBIPを用いるとS体のアミノ酸誘導体が得られた。芳香環をもたないアザニルエステルから高いエナンチオ過剰率でアミノ酸誘導体2dを与え、リトコール酸誘導体1eのような複雑化合物を用いても問題なく反応が進行した。
DFT計算により、この高いエナンチオ選択性は、先行研究[5]と同様に遷移状態におけるアザニルエステルのアリール基と触媒のピリジン部位とのπ–π相互作用に起因することがわかった(図 2B)。なお、芳香環をもたない場合は、カルボニルa位の置換基と窒素上の保護基との立体障害を避けるような立体配座をとることで、エナンチオ選択的に反応が進行すると著者らは結論づけた(論文参照)。
著者らは計算化学と実験的な反応機構解析から本反応はラジカル機構であると推定している(図 2C)。まず、アザニルエステル1のN–O結合が開裂し、各々が触媒に配位することで中間体Aを与える。続いて、水素原子移動(HAT)によりジラジカルBが生じる。ラジカルリバウンドによってキレート錯体Cが生成し、プロトン化されて錯体から脱離することで、アミノ酸誘導体2を与える。

図2. (A) 反応条件と基質適用範囲 (B) 主要な遷移状態 (C) 推定反応機構

以上、Chiral-at-Metal錯体を用いたナイトレンのC–H挿入反応による、a-アミノ酸の不斉合成法が開発された。アザニルエステルから分子内で窒素を”トス”することで、高い反応性とエナンチオ選択性を獲得した。本手法により、多分野におけるアミノ酸研究の促進が期待できる。

 用語説明

Chiral-at-Metal錯体: 複数の二座配位子が八面体錯体を形成することで中心金属が不斉点となる錯体を指す(図3)。Meggersらが開発した錯体では、二つの二座配位子によって中心金属の立体化学が決定する。配位したアセトニトリルは容易に脱離し、反応基質が配位する。

図3. Chiral-at-Metal錯体

 

参考文献

  1. (a) Koniev, O.; Wagner, A. Developments and Recent Advancements in the Field of Endogenous Amino Acid Selective Bond Forming Reactions for Bioconjugation. Chem. Soc. Rev. 2015, 44, 5495–5551. DOI: doi.org/10.1039/C5CS00048C (b) Mazo, A. R.; Allison-Logan, S.; Karimi, F.; Chan, N. J.-A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G. Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834. DOI: 10.1039/C9CS00738E (c) Blaskovich, M. A. T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807–10836. DOI: 10.1021/acs.jmedchem.6b00319
  2. For selected examples; (a) Saaby, S.; Bella, M.; Jørgensen, K. A. Asymmetric Construction of Quaternary Stereocenters by Direct Organocatalytic Amination of α-Substituted α- Cyanoacetates and β-Dicarbonyl Compounds. J. Am. Chem. Soc. 2004, 126, 8120–8121. DOI: 10.1021/ja047704j (b) Suri, J. T.; Steiner, D. D.; Barbas, C. F. Organocatalytic Enantioselective Synthesis of Metabotropic Glutamate Receptor Ligands. Org. Lett. 2005, 7, 3885–3888. DOI: 10.1021/ol0512942 (c) Evans, D. A.; Nelson, S. G. Chiral Magnesium Bis(sulfonamide) Complexes as Catalysts for the Merged Enolization and Enantioselective Amination of N-Acyloxazolidinones. A Catalytic Approach to the Synthesis of Arylglycines. J. Am. Chem. Soc. 1997, 119, 6452–6453. DOI: 10.1021/ja971367f
  3. Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Catalytic Asymmetric α-Amination of Carboxylic Acids Using Isothioureas. Chem. Sci. 2012, 3, 2088–2093. DOI: 10.1039/C2SC20171B
  4. For selected examples; (a) Nishioka, Y.; Uchida, T.; Katsuki, T. Enantio- and Regioselective Intermolecular Benzylic and Allylic C–H Bond Amination. Angew. Chem., Int. Ed. 2013, 52, 1739–1742. DOI: 10.1002/anie.201208906 (b) Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses, B.; Dauban, P. Catalytic Enantioselective Intermolecular Benzylic C(sp3)–H Amination. Angew. Chem., Int. Ed. 2019, 58, 8192–8196. DOI: 10.1002/anie.201902882
  5. (a) Zhou, Z.; Chen, S.; Qin, J.; Nie, X.; Zheng, X.; Harms, K.; Riedel, R.; Houk, K. N.; Meggers, E. Catalytic Enantioselective Intramolecular C(sp3)–H Amination of 2-Azidoacetamides. Angew. Chem., Int. Ed. 2019, 58, 1088–1093. DOI: 10.1002/anie.201811927
  6. Zhou, Z.; Tan, Y.; Yamahira, T.; Ivlev, S.; Xie, X.; Riedel, R.; Hemming, M.; Kimura, M.; Meggers, E. Enantioselective Ring- Closing C–H Amination of Urea Derivatives. Chem 2020, 6, 2024– DOI: 10.1016/j.chempr.2020.05.017
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 機能性ナノマテリアル シクロデキストリンの科学ーChemical…
  2. 細胞をすりつぶすと失われるもの
  3. 環状ペプチドの効率的な化学-酵素ハイブリッド合成法の開発
  4. “腕に覚えあり”の若手諸君、「大津会議」…
  5. 有機合成化学協会誌2024年3月号:遠隔位電子チューニング・含窒…
  6. 【日産化学 21卒】START your chemi-story…
  7. ケムステタイムトラベル2010 ~今こそ昔の記事を見てみよう~
  8. Nature Chemistry誌のインパクトファクターが公開!…

注目情報

ピックアップ記事

  1. 研究者のためのCG作成術④(レンダリング編)
  2. 【6/26・27開催ウェビナー】バイオ分野の分析評価・試験~粒子径測定と吸入製剤試験の新技術~(三洋貿易株式会社)
  3. 日本薬学会第144年会 (横浜) に参加してきました
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part II
  5. Illustrated Guide to Home Chemistry Experiments
  6. リチウムを用いたメカノケミカル脱水素環化法によるナノグラフェン合成
  7. 日本人化学者による卓越した化学研究
  8. ダニエル レオノリ Daniele Leonori
  9. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  10. 分子振動と協奏する超高速励起子分裂現象の解明

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP