[スポンサーリンク]

化学者のつぶやき

カルボン酸、窒素をトスしてアミノ酸へ

[スポンサーリンク]

カルボン酸誘導体の不斉アミノ化によりキラルαアミノ酸の合成法が報告された。カルボン酸をヒドロキシルアミンと縮合後、ルテニウムもしくは鉄触媒によりアミン部位の特異な1,3-移動が進行する。

不斉C(sp3)–Hアミノ化

α-アミノ酸(非天然を含む)は、生物活性物質、機能性材料、医薬品など様々な分野で用いられるため、その簡便な不斉合成法開発の学術・産業的価値は極めて高い[1]。直截的な合成法として、入手容易なカルボン酸のカルボニルα位でのC–N結合形成が考えられる。実際に、カルボニル化合物の直接不斉アミノ化は多く報告されているが[2]、酸性度の低いカルボン酸を出発物質として用いたのはほとんどない(図 1A)[3]。また、適用可能なアミノ化剤は一般的にアゾ化合物である。したがって、それら反応で得た生成物をアミノ酸へと導くのは多工程に渡る上、困難である。
一方、ナイトレン挿入反応は触媒によって反応性、反応点を調整できる有用なC–Hアミノ化法である。分子内反応は確立されているものの、分子間反応はそのエナンチオ選択性に課題がある[4]。本論文著者のMeggersらは2019年、ナイトレン挿入反応によるアジド基をもつアセトアミドの不斉分子内アミノ化を報告した(図 1B)[5]。本反応では、著者らが得意とするChiral-at-Metal(Ru)錯体*1が不斉触媒として用いられた。アジドとRu錯体により生成したナイトレンがC–H結合と反応する。その際に、アセトアミドのアリール基と触媒のピリジンのp-p相互作用により立体配座が固定され、高エナンチオ選択的に反応が進行する。2020年、同様の触媒によりウレア誘導体の不斉分子内C–Hアミノ化にも成功した[6]。著者らはこの反応形式をカルボン酸の不斉アミノ化反応に適用できないかと考えた。試行錯誤の末、カルボン酸とヒドロキシルアミンの縮合体であるアザニルエステルを出発物質に用い、窒素原子を転位させる「分子内」不斉C–Hアミノ化を開発した(図 1C)。すなわち、アザニルエステルのN–O結合が開裂し、生じたナイトレンがカルボン酸のカルボニルα位のC–H結合に挿入することで反応が進行すると想定した。

図1. (A) カルボニル位の不斉アミノ化反応 (B) chiral-at-metal錯体を用いたナイトレン挿入反応 (C) 今回の研究

 

“Stereocontrolled 1,3-Nitrogen Migration to Access Chiral α-Amino Acids”
Ye, C. -X.; Shen, X.; Chen, S.; Meggers, E. Nat. Chem. 2022, 14, 566–573.
DOI: 10.1038/s41557-022-00895-3

論文著者の紹介

研究者:Eric Meggers 

研究内容: Chiral-at-Metal錯体を用いた不斉反応、キラルな光触媒を用いた不斉反応

研究者:Shuming Chen (陈 舒铭)

研究者の経歴:

2016    Ph. D., Yale University, USA (Prof. Jonathan A. Ellman)

2016–2019 Postdoc, University of California, Los Angeles, USA (Prof. Kendall N. Houk)

2020–     Assistant Professor, Oberlin College, USA

研究内容: 計算化学による反応機構の解明

 

論文の概要

著者らは、アザニルエステル1に対してジクロロメタン中、L-RuDMPと炭酸カリウムを作用させることで(R)-アミノ酸誘導体2が得られることを見いだした(図 2A)。例えば、フェニル基(2a)、アジド基(2b)をもつアザニルエステルを用いると良好な収率、エナンチオ過剰率で対応するアミノ酸誘導体を与えた。光学活性なa位二置換アザニルエステルも本反応に適用できた((s)-1c→(R)-2c)。また、(R,R)-FeBIPを用いるとS体のアミノ酸誘導体が得られた。芳香環をもたないアザニルエステルから高いエナンチオ過剰率でアミノ酸誘導体2dを与え、リトコール酸誘導体1eのような複雑化合物を用いても問題なく反応が進行した。
DFT計算により、この高いエナンチオ選択性は、先行研究[5]と同様に遷移状態におけるアザニルエステルのアリール基と触媒のピリジン部位とのπ–π相互作用に起因することがわかった(図 2B)。なお、芳香環をもたない場合は、カルボニルa位の置換基と窒素上の保護基との立体障害を避けるような立体配座をとることで、エナンチオ選択的に反応が進行すると著者らは結論づけた(論文参照)。
著者らは計算化学と実験的な反応機構解析から本反応はラジカル機構であると推定している(図 2C)。まず、アザニルエステル1のN–O結合が開裂し、各々が触媒に配位することで中間体Aを与える。続いて、水素原子移動(HAT)によりジラジカルBが生じる。ラジカルリバウンドによってキレート錯体Cが生成し、プロトン化されて錯体から脱離することで、アミノ酸誘導体2を与える。

図2. (A) 反応条件と基質適用範囲 (B) 主要な遷移状態 (C) 推定反応機構

以上、Chiral-at-Metal錯体を用いたナイトレンのC–H挿入反応による、a-アミノ酸の不斉合成法が開発された。アザニルエステルから分子内で窒素を”トス”することで、高い反応性とエナンチオ選択性を獲得した。本手法により、多分野におけるアミノ酸研究の促進が期待できる。

 用語説明

Chiral-at-Metal錯体: 複数の二座配位子が八面体錯体を形成することで中心金属が不斉点となる錯体を指す(図3)。Meggersらが開発した錯体では、二つの二座配位子によって中心金属の立体化学が決定する。配位したアセトニトリルは容易に脱離し、反応基質が配位する。

図3. Chiral-at-Metal錯体

 

参考文献

  1. (a) Koniev, O.; Wagner, A. Developments and Recent Advancements in the Field of Endogenous Amino Acid Selective Bond Forming Reactions for Bioconjugation. Chem. Soc. Rev. 2015, 44, 5495–5551. DOI: doi.org/10.1039/C5CS00048C (b) Mazo, A. R.; Allison-Logan, S.; Karimi, F.; Chan, N. J.-A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G. Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834. DOI: 10.1039/C9CS00738E (c) Blaskovich, M. A. T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807–10836. DOI: 10.1021/acs.jmedchem.6b00319
  2. For selected examples; (a) Saaby, S.; Bella, M.; Jørgensen, K. A. Asymmetric Construction of Quaternary Stereocenters by Direct Organocatalytic Amination of α-Substituted α- Cyanoacetates and β-Dicarbonyl Compounds. J. Am. Chem. Soc. 2004, 126, 8120–8121. DOI: 10.1021/ja047704j (b) Suri, J. T.; Steiner, D. D.; Barbas, C. F. Organocatalytic Enantioselective Synthesis of Metabotropic Glutamate Receptor Ligands. Org. Lett. 2005, 7, 3885–3888. DOI: 10.1021/ol0512942 (c) Evans, D. A.; Nelson, S. G. Chiral Magnesium Bis(sulfonamide) Complexes as Catalysts for the Merged Enolization and Enantioselective Amination of N-Acyloxazolidinones. A Catalytic Approach to the Synthesis of Arylglycines. J. Am. Chem. Soc. 1997, 119, 6452–6453. DOI: 10.1021/ja971367f
  3. Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Catalytic Asymmetric α-Amination of Carboxylic Acids Using Isothioureas. Chem. Sci. 2012, 3, 2088–2093. DOI: 10.1039/C2SC20171B
  4. For selected examples; (a) Nishioka, Y.; Uchida, T.; Katsuki, T. Enantio- and Regioselective Intermolecular Benzylic and Allylic C–H Bond Amination. Angew. Chem., Int. Ed. 2013, 52, 1739–1742. DOI: 10.1002/anie.201208906 (b) Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses, B.; Dauban, P. Catalytic Enantioselective Intermolecular Benzylic C(sp3)–H Amination. Angew. Chem., Int. Ed. 2019, 58, 8192–8196. DOI: 10.1002/anie.201902882
  5. (a) Zhou, Z.; Chen, S.; Qin, J.; Nie, X.; Zheng, X.; Harms, K.; Riedel, R.; Houk, K. N.; Meggers, E. Catalytic Enantioselective Intramolecular C(sp3)–H Amination of 2-Azidoacetamides. Angew. Chem., Int. Ed. 2019, 58, 1088–1093. DOI: 10.1002/anie.201811927
  6. Zhou, Z.; Tan, Y.; Yamahira, T.; Ivlev, S.; Xie, X.; Riedel, R.; Hemming, M.; Kimura, M.; Meggers, E. Enantioselective Ring- Closing C–H Amination of Urea Derivatives. Chem 2020, 6, 2024– DOI: 10.1016/j.chempr.2020.05.017

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. キノリンをLED光でホップさせてインドールに
  2. 有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カ…
  3. 今年は国際周期表年!
  4. つぶれにくく元にも戻せる多孔性結晶の開発
  5. 強塩基条件下でビニルカチオン形成により5員環をつくる
  6. なんと!アルカリ金属触媒で進む直接シリル化反応
  7. as well asの使い方
  8. 300分の1を狙い撃つ~カチオン性ロジウム触媒による高選択的[2…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. FT-IR(赤外分光法)の基礎と高分子材料分析の実際【終了】
  2. ブラシノステロイド (brassinosteroid)
  3. オープンアクセス論文が半数突破か
  4. Mukaiyama Award―受賞者一覧
  5. ノルゾアンタミンの全合成
  6. 2022年度 第22回グリーン・サステイナブル ケミストリー賞 候補業績 募集のご案内
  7. デヴィッド・シュピーゲル David A. Spiegel
  8. 第13回ケムステVシンポジウム「創薬化学最前線」を開催します!
  9. 化学遺産スロイス『舎密学』とグリフィス『化学筆記』が展示へ
  10. ChemDrawの使い方【作図編②:触媒サイクル】

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

最新記事

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP