[スポンサーリンク]

化学者のつぶやき

カルボン酸、窒素をトスしてアミノ酸へ

[スポンサーリンク]

カルボン酸誘導体の不斉アミノ化によりキラルαアミノ酸の合成法が報告された。カルボン酸をヒドロキシルアミンと縮合後、ルテニウムもしくは鉄触媒によりアミン部位の特異な1,3-移動が進行する。

不斉C(sp3)–Hアミノ化

α-アミノ酸(非天然を含む)は、生物活性物質、機能性材料、医薬品など様々な分野で用いられるため、その簡便な不斉合成法開発の学術・産業的価値は極めて高い[1]。直截的な合成法として、入手容易なカルボン酸のカルボニルα位でのC–N結合形成が考えられる。実際に、カルボニル化合物の直接不斉アミノ化は多く報告されているが[2]、酸性度の低いカルボン酸を出発物質として用いたのはほとんどない(図 1A)[3]。また、適用可能なアミノ化剤は一般的にアゾ化合物である。したがって、それら反応で得た生成物をアミノ酸へと導くのは多工程に渡る上、困難である。
一方、ナイトレン挿入反応は触媒によって反応性、反応点を調整できる有用なC–Hアミノ化法である。分子内反応は確立されているものの、分子間反応はそのエナンチオ選択性に課題がある[4]。本論文著者のMeggersらは2019年、ナイトレン挿入反応によるアジド基をもつアセトアミドの不斉分子内アミノ化を報告した(図 1B)[5]。本反応では、著者らが得意とするChiral-at-Metal(Ru)錯体*1が不斉触媒として用いられた。アジドとRu錯体により生成したナイトレンがC–H結合と反応する。その際に、アセトアミドのアリール基と触媒のピリジンのp-p相互作用により立体配座が固定され、高エナンチオ選択的に反応が進行する。2020年、同様の触媒によりウレア誘導体の不斉分子内C–Hアミノ化にも成功した[6]。著者らはこの反応形式をカルボン酸の不斉アミノ化反応に適用できないかと考えた。試行錯誤の末、カルボン酸とヒドロキシルアミンの縮合体であるアザニルエステルを出発物質に用い、窒素原子を転位させる「分子内」不斉C–Hアミノ化を開発した(図 1C)。すなわち、アザニルエステルのN–O結合が開裂し、生じたナイトレンがカルボン酸のカルボニルα位のC–H結合に挿入することで反応が進行すると想定した。

図1. (A) カルボニル位の不斉アミノ化反応 (B) chiral-at-metal錯体を用いたナイトレン挿入反応 (C) 今回の研究

 

“Stereocontrolled 1,3-Nitrogen Migration to Access Chiral α-Amino Acids”
Ye, C. -X.; Shen, X.; Chen, S.; Meggers, E. Nat. Chem. 2022, 14, 566–573.
DOI: 10.1038/s41557-022-00895-3

論文著者の紹介

研究者:Eric Meggers 

研究内容: Chiral-at-Metal錯体を用いた不斉反応、キラルな光触媒を用いた不斉反応

研究者:Shuming Chen (陈 舒铭)

研究者の経歴:

2016    Ph. D., Yale University, USA (Prof. Jonathan A. Ellman)

2016–2019 Postdoc, University of California, Los Angeles, USA (Prof. Kendall N. Houk)

2020–     Assistant Professor, Oberlin College, USA

研究内容: 計算化学による反応機構の解明

 

論文の概要

著者らは、アザニルエステル1に対してジクロロメタン中、L-RuDMPと炭酸カリウムを作用させることで(R)-アミノ酸誘導体2が得られることを見いだした(図 2A)。例えば、フェニル基(2a)、アジド基(2b)をもつアザニルエステルを用いると良好な収率、エナンチオ過剰率で対応するアミノ酸誘導体を与えた。光学活性なa位二置換アザニルエステルも本反応に適用できた((s)-1c→(R)-2c)。また、(R,R)-FeBIPを用いるとS体のアミノ酸誘導体が得られた。芳香環をもたないアザニルエステルから高いエナンチオ過剰率でアミノ酸誘導体2dを与え、リトコール酸誘導体1eのような複雑化合物を用いても問題なく反応が進行した。
DFT計算により、この高いエナンチオ選択性は、先行研究[5]と同様に遷移状態におけるアザニルエステルのアリール基と触媒のピリジン部位とのπ–π相互作用に起因することがわかった(図 2B)。なお、芳香環をもたない場合は、カルボニルa位の置換基と窒素上の保護基との立体障害を避けるような立体配座をとることで、エナンチオ選択的に反応が進行すると著者らは結論づけた(論文参照)。
著者らは計算化学と実験的な反応機構解析から本反応はラジカル機構であると推定している(図 2C)。まず、アザニルエステル1のN–O結合が開裂し、各々が触媒に配位することで中間体Aを与える。続いて、水素原子移動(HAT)によりジラジカルBが生じる。ラジカルリバウンドによってキレート錯体Cが生成し、プロトン化されて錯体から脱離することで、アミノ酸誘導体2を与える。

図2. (A) 反応条件と基質適用範囲 (B) 主要な遷移状態 (C) 推定反応機構

以上、Chiral-at-Metal錯体を用いたナイトレンのC–H挿入反応による、a-アミノ酸の不斉合成法が開発された。アザニルエステルから分子内で窒素を”トス”することで、高い反応性とエナンチオ選択性を獲得した。本手法により、多分野におけるアミノ酸研究の促進が期待できる。

 用語説明

Chiral-at-Metal錯体: 複数の二座配位子が八面体錯体を形成することで中心金属が不斉点となる錯体を指す(図3)。Meggersらが開発した錯体では、二つの二座配位子によって中心金属の立体化学が決定する。配位したアセトニトリルは容易に脱離し、反応基質が配位する。

図3. Chiral-at-Metal錯体

 

参考文献

  1. (a) Koniev, O.; Wagner, A. Developments and Recent Advancements in the Field of Endogenous Amino Acid Selective Bond Forming Reactions for Bioconjugation. Chem. Soc. Rev. 2015, 44, 5495–5551. DOI: doi.org/10.1039/C5CS00048C (b) Mazo, A. R.; Allison-Logan, S.; Karimi, F.; Chan, N. J.-A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G. Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834. DOI: 10.1039/C9CS00738E (c) Blaskovich, M. A. T. Unusual Amino Acids in Medicinal Chemistry. J. Med. Chem. 2016, 59, 10807–10836. DOI: 10.1021/acs.jmedchem.6b00319
  2. For selected examples; (a) Saaby, S.; Bella, M.; Jørgensen, K. A. Asymmetric Construction of Quaternary Stereocenters by Direct Organocatalytic Amination of α-Substituted α- Cyanoacetates and β-Dicarbonyl Compounds. J. Am. Chem. Soc. 2004, 126, 8120–8121. DOI: 10.1021/ja047704j (b) Suri, J. T.; Steiner, D. D.; Barbas, C. F. Organocatalytic Enantioselective Synthesis of Metabotropic Glutamate Receptor Ligands. Org. Lett. 2005, 7, 3885–3888. DOI: 10.1021/ol0512942 (c) Evans, D. A.; Nelson, S. G. Chiral Magnesium Bis(sulfonamide) Complexes as Catalysts for the Merged Enolization and Enantioselective Amination of N-Acyloxazolidinones. A Catalytic Approach to the Synthesis of Arylglycines. J. Am. Chem. Soc. 1997, 119, 6452–6453. DOI: 10.1021/ja971367f
  3. Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. Catalytic Asymmetric α-Amination of Carboxylic Acids Using Isothioureas. Chem. Sci. 2012, 3, 2088–2093. DOI: 10.1039/C2SC20171B
  4. For selected examples; (a) Nishioka, Y.; Uchida, T.; Katsuki, T. Enantio- and Regioselective Intermolecular Benzylic and Allylic C–H Bond Amination. Angew. Chem., Int. Ed. 2013, 52, 1739–1742. DOI: 10.1002/anie.201208906 (b) Nasrallah, A.; Boquet, V.; Hecker, A.; Retailleau, P.; Darses, B.; Dauban, P. Catalytic Enantioselective Intermolecular Benzylic C(sp3)–H Amination. Angew. Chem., Int. Ed. 2019, 58, 8192–8196. DOI: 10.1002/anie.201902882
  5. (a) Zhou, Z.; Chen, S.; Qin, J.; Nie, X.; Zheng, X.; Harms, K.; Riedel, R.; Houk, K. N.; Meggers, E. Catalytic Enantioselective Intramolecular C(sp3)–H Amination of 2-Azidoacetamides. Angew. Chem., Int. Ed. 2019, 58, 1088–1093. DOI: 10.1002/anie.201811927
  6. Zhou, Z.; Tan, Y.; Yamahira, T.; Ivlev, S.; Xie, X.; Riedel, R.; Hemming, M.; Kimura, M.; Meggers, E. Enantioselective Ring- Closing C–H Amination of Urea Derivatives. Chem 2020, 6, 2024– DOI: 10.1016/j.chempr.2020.05.017

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アスピリンの合成実験 〜はじめての化学合成〜
  2. トリプトファン選択的なタンパク質修飾反応の開発
  3. 光化学スモッグ注意報が発令されました
  4. 日本プロセス化学会2018ウインターシンポジウム
  5. 化学とウェブのフュージョン
  6. どろどろ血液でもへっちゃら
  7. アブノーマルNHC
  8. 英語発表に”慣れる”工夫を―『ハイブリッ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. Illustrated Guide to Home Chemistry Experiments
  2. 第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授
  3. スーパーなパーティクル ースーパーパーティクルー
  4. 二酸化炭素の工業用有機材料への利用とその作製技術
  5. 安全なジアゾメタン原料
  6. 可逆的付加-開裂連鎖移動重合 RAFT Polymerization
  7. ターボグリニャール試薬
  8. アミジルラジカルで遠隔位C(sp3)-H結合を切断する
  9. 免疫/アレルギーーChemical Times特集より
  10. ショウガに含まれる辛味成分

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年6月
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

【ジーシー】新卒採用情報(2024卒)

弊社の社是「施無畏」は、「相手の身になって行動する」といった意味があります。これを具現化することで存…

【書評】科学実験でスラスラわかる! 本当はおもしろい 中学入試の理科

大和書房さんより 2022年9月に刊行された『科学実験でスラスラわかる!…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP