[スポンサーリンク]

ケミカルバイオロジー

高橋 大介 Daisuke Takahashi

[スポンサーリンク]

高橋大介(たかはし だいすけ,Daisuke Takahashi)は,日本の化学者である。専門は,糖質化学,有機合成化学,ケミカルバイオロジー。2020年現在,慶應義塾大学理工学部応用化学科 准教授。

経歴

2001年  東京工業大学工学部化学工学科応用化学コース 卒業
2003年  東京工業大学大学院理工学研究科応用化学専攻 修士課程修了
2005年  独立行政法人 日本学術振興会特別研究員(DC2)
2006年  東京工業大学大学院理工学研究科応用化学専攻 博士課程修了
博士(工学)取得(高橋孝志 教授)
2006年  独立行政法人 日本学術振興会特別研究員(PD)
2007年  デンマーク国 カールスバーグ研究所 博士研究員(Ole Hindsgaul 教授)
2008年  慶應義塾大学理工学部応用化学科 助教(有期)
2011年  慶應義塾大学理工学部応用化学科 助教
2012年  慶應義塾大学理工学部応用化学科 専任講師
2016年  慶應義塾大学理工学部応用化学科 准教授

受賞歴

2009年  日本化学会第89春季年会「優秀講演賞(学術)」
2015年  有機合成化学協会カネカ研究企画賞
2015年  東京糖鎖研究会奨励賞
2016年  日本化学会第96春季年会「若い世代の特別講演会」講演者
2016年  第19回日本糖質学会奨励賞
2017年  第35回有機合成化学奨励賞

研究概要

天然および医薬品のなかには,興味深い生物活性を示す糖質が数多く存在しており,これら有用糖質の機能を理解・活用・制御する新技術の開発は,次世代の生命科学分野において極めて重要である。このような背景の中,高橋は,分子生命化学研究室(主宰者 戸嶋一敦 教授)において,(1)有機ホウ素化合物を活用した新規グリコシル化反応の開発と応用,(2)天然硫酸化多糖フコイダン類縁体の系統的合成と生物活性評価,(3)標的糖質の機能を精密に制御する人工生体機能分子の創製研究に取り組んでいる。ここでは,特に(1)と(2)の概要を示した。

(1)有機ホウ素化合物を活用した新規グリコシル化反応の開発と応用

天然および医薬品のなかには,α-グルコシドおよびβ-マンノシドに代表される,1,2-cisグリコシドを有する配糖体が数多く存在しており,これら化合物の活性発現機構の解明や,構造活性相関の解明,さらには,これら有用糖質の誘導化による新たな医薬品のリード化合物の創出が期待されている。しかし,1,2-cisグリコシド結合は,1,2-transグリコシド結合とは異なり, 糖供与体(ドナー)2 位のアシル系保護基による隣接基関与を利用できないことから,立体選択的な構築が困難な結合様式であり,その効率的な合成法の開発が求められている。そこで,高橋らは,有機ホウ素化合物の化学的特性を活用して,1,2-cis-立体選択性を精密に制御する新たな触媒的グリコシル化反応(ホウ素介在型アグリコン転移反応:Boron-Mediated Aglycon Delivery (BMAD))を開発した。すなわち,糖供与体として選択した1,2-アンヒドロ糖に対して,芳香族ボリン酸とモノオール受容体(アクセプター)から形成されるボリン酸-糖受容体エステルを作用させるのみで,その他の試薬を添加することなく,望む1,2-cis グリコシドが立体選択的に得られることを見出した[1-5]。次に,ホウ素触媒を芳香族ボロン酸に変更することで,1,2-cis 立体選択性に加えて,糖受容体上の水酸基の位置選択性も同時に制御可能であることを明らかにした[5-8]。さらに,本反応が無保護糖や等価な2つの水酸基を有するメソジオールにも応用可能であり,DFT計算で事前に予測した水酸基に対して,位置および立体選択的に配糖化できることを見出した[9-11]。

(2)天然硫酸化多糖フコイダン類縁体の系統的合成と生物活性評価

フコイダンは,ツルモやヒバマタなどの天然渇藻類に含まれるL-フコースを基本骨格とした硫酸化多糖であり,これまでに,抗腫瘍活性をはじめとする様々な生物活性を発現することが報告されている。しかし,天然由来フコイダンは,褐藻類の種によって糖鎖構造や分子量が異なること,また同じ種からの抽出物でも,その抽出方法によって分子量や硫酸化様式が不均一になる問題点を有している。そこで,高橋らは,天然由来フコイダンを基本構造とし,糖鎖構造,重合度,および硫酸化様式が異なるフコイダン類縁体を系統的に合成後,それらの生物活性を評価した。その結果,類縁体7が,ヒトがん細胞(MCF-7およびHeLa)に対して,天然由来フコイダンに匹敵するアポトーシス誘導活性を発現することを明らかした[12,13]。さらに,インフルエンザウイルスに対する効果を,佐藤智典 教授および松原輝彦 准教授(慶大)らと共に評価した結果,類縁体5が,インフルザウイルスヘマグルチニン(IFV-HA)に対して選択的に作用し,抗インフルエンザウイルス(IFV)(H1N1型およびH3N2型)活性を発現することを初めて見出した[14]。

参考文献

  1.  Tanaka, M.; Nashida, J.; *Takahashi, D.; *Toshima, K. Org. Lett. 2016, 18, 2288-2291. DOI: 10.1021/acs.orglett.6b00926
  2. Tanaka, M.; *Takahashi, D.; *Toshima, K. Org. Lett. 2016, 18, 5030-5033. DOI: 10.1021/acs.orglett.6b02488
  3. Nashida, J.; Nishi, N.; Takahashi, Y.; Igarashi, M.; Hayashi, C.; *Takahashi, D.; *Toshima, K. J. Org. Chem. 2018, 83, 7281-7289. DOI:10.1021/acs.joc.8b00032
  4. Review: *高橋大介, 有機合成化学協会誌, 2018, 76, 470-473. DOI: 10.5059/yukigoseikyokaishi
  5. Nishi, N.; Sueoka, K.; Iijima, K.; Sawa, R.; *Takahashi, D.; *Toshima, K. Angew. Chem. Int. Ed. 2018, 57, 13858-13862. DOI: 10.1002/anie.201808045
  6. Nakagawa, A.; Tanaka, M.; Hanamura, S.; *Takahashi, D.; *Toshima, K. Angew. Chem., Int. Ed. 2015, 54, 10935-10939. DOI: 10.1002/anie.201504182
  7. Nishi, N.; Nashida, J.; Kaji, E.; *Takahashi, D.; *Toshima, K. Chem. Commun. 2017, 53, 3018-3021. DOI: 10.1039/c7cc00269f
  8. Inaba, K.; Endo, M.; Iibuchi, N.; *Takahashi, D.; *Toshima, K. Chem. Eur. J. 2020, in press. DOI: 10.1002/chem.202002878
  9. Tanaka, M.; Nakagawa, A.; Nishi, N.; Iijima, K.; Sawa, R.; *Takahashi, D.; *Toshima, K. J. Am. Chem. Soc. 2018, 140, 3644-3651. DOI: 10.1021/jacs.7b12108
  10. Tanaka, M.; Sato, K.; Yoshida, R.; Nishi, N.; Oyamada, R.; Inaba, K.; *Takahashi, D.; *Toshima, K. Nat. Commun. 2020, 11, 2431. DOI: 10.1038/s41467-020-16365-8
  11. Review: *高橋大介, 有機合成化学協会誌, 2020, 78, 221-231. DOI: 10.5059/yukigoseikyokaishi
  12. Arafuka, S.; Koshiba, N.; *Takahashi, D.; *Toshima, K. Chem. Commun. 2014, 50, 9831-9834. DOI: 10.1039/c4cc03544e
  13. Kasai, A.; Arafuka, S.; Koshiba, N.; *Takahashi, D.; *Toshima, K. Org. Biomol. Chem. 2015, 13, 10556-10568. DOI: 10.1039/c5ob01634g
  14. Kosono, S.; Kasai, A.; Komaba, S.; Matsubara, T.; Sato, T.; *Takahashi, D.; *Toshima, K. Chem. Commun. 2018, 54, 7467-7470. DOI: 10.1039/c8cc03865a

ケムステ関連記事

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ジェームズ・ロスマン James Rothman
  2. デヴィッド・クレネマン David Klenerman
  3. スティーブン・ジマーマン Steven C. Zimmerman…
  4. 春田 正毅 Masatake Haruta
  5. クリストファー・ウエダ Christopher Uyeda
  6. ロバート・グラブス Robert H. Grubbs
  7. マイケル・レヴィット Michael Levitt
  8. ティム・ジャミソン Timothy F. Jamison

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機トリフルオロボレート塩 Organotrifluoroborate Salt
  2. マンダムと京都大学、ヘアスタイルを自然な仕上がりのままキープする整髪技術を開発
  3. 「石油化学」の新ネーミング募集!
  4. 2016年4月の注目化学書籍
  5. 抗精神病薬として初めての口腔内崩壊錠が登場
  6. カクテルにインスパイアされた男性向け避妊法が開発される
  7. ヨウ化サマリウム(II) Samarium(II) Iodide SmI2
  8. ウギ反応 Ugi Reaction
  9. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実現に向けて-
  10. 新たな環状スズ化合物の合成とダブルカップリングへの応用

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学研究で役に立つデータ解析入門:エクセルでも立派な解析ができるぞ編

化学分野でのAIを使った研究が多数報告されていてデータ解析は流行のトピックとなっていますが、専門外か…

高分子化学をふまえて「神経のような動きをする」電子素子をつくる

第267回のスポットライトリサーチは、東北大学大学院工学研究科 バイオ工学専攻 三ツ石研究室 助教の…

アルケンのエナンチオ選択的ヒドロアリール化反応

パラジウム触媒を用いたアルケンの還元的Heck型ヒドロアリール化反応が開発された。容易に着脱可能なキ…

第109回―「サステイナブルな高分子材料の創製」Andrew Dove教授

第109回の海外化学者インタビューは、アンドリュー・ダヴ教授です。ワーウィック大学化学科に所属(訳注…

蛍光異方性 Fluorescence Anisotropy

蛍光異方性(fluorescence anisotropy)とは溶液中で回転する分子の回転速…

(–)-Spirochensilide Aの不斉全合成

(–)-Spirochensilide Aの初の不斉全合成が達成された。タングステンを用いたシクロプ…

第108回―「Nature Chemistryの編集長として」Stuart Cantrill博士

第108回の海外化学者インタビューは、スチュアート・カントリル博士です。Nature Chemist…

化学工業で活躍する有機電解合成

かつて化学工業は四大公害病をはじめ深刻な外部不経済をもたらしましたが、現代ではその反省を踏まえ、安全…

Chem-Station Twitter

PAGE TOP