[スポンサーリンク]

一般的な話題

さあ分子模型を取り出して

[スポンサーリンク]

 

コンコン(教授室のドアがノックされる)

教授:やれやれ有機化学の講義の後はいつもこの調子だな

学生:本日の講義で分からないところがあったのですが、質問してもよろしいでしょうか?

教授:もちろんだとも

学生:アレンのπ電子系の説明のところですが、なぜ2つのCH2同士は直交しているのでしょうか?

教授:それは講義の際に説明したはずだが?

学生:板書はノートに書き写したのですが、この点線と太字の結合がどちらに向いているのかがイメージできなくて・・・

教授:なるほど。それではいいものを君にお見せするとしようか・・

 

これは恐らくどこの化学系の大学でも毎年のように繰り返される教授と学生の会話でしょう。

 

今回のポストは月一恒例  Nature Chemistry誌から、Bryn Mawr CollegeMichelle Francl教授のthesisを紹介します。冒頭の部分はFrancl教授の書き出しを参考に筆者により脚色を加えていることをお断りいたしておきます。前回のはこちら

 

Tangible assets

Francl, M. Nature Chem. 5, 147-148 (2012). doi:10.1038/nchem.1585

 

化学とは原子と原子の結合を切ったり、くっつけたりする学問です。でも残念なことに現実ではその様子を見ることは出来ません。よって分子の形や、結合の様子などは想像図を描いているに過ぎません。それを三次元的に可視化したものが分子模型です。原理は単純で原子をボールに見たて、その原子の結合ができる方向に穴を空けておき、結合の代わりに棒を差し込んでいけば出来上がりです。

 

The building of physical models of molecular systems is an art that should not be confined to the introductory courses.

 

大学の初等有機化学では必ずと言っていいほどこの分子模型を使って有機化合物の立体構造を学びます。やはりノートや黒板に書いてあれこれ言うよりも、実際に模型を手にとってメタンの四面体構造を触ったり、鏡像異性体が重なり合わないことを体験する方が教育効果が高いと思います。

かのWatsonとCrickがDNAの二重螺旋の解明に取り組んでいた時、自作の核酸塩基の模型を組み立てていたのは有名なお話ですね。

 

model_1.png

© SCIENCE MUSEUM / SCIENCE & SOCIETY PICTURE LIBRARY 写真はWatson-Crickの模型 論文より引用

 

確かに近年のコンピュータの進化のおかげでタンパク質のような巨大分子の構造を計算によって明らかにすることが比較的短時間でできるようになってきました。世界中のPlayStationを使ったグリッドコンピューティングによってタンパク質の構造を解明したなんてこともありました。もしくは世界中のゲーマーによってタンパク質の構造を解明なんてのもありましたね。

 

数万円で購入できるパーソナルコンピュータの画面上で3Dの分子をグリグリ回したりもできますし、反応の遷移状態を推測するようなこともできるようになっています。

 

There are unrecognized perils in using computer models, particularly for novices.

 

そんな計算は化学において無くてはならない存在であることは疑いの余地はありません。でも、ちょっと待って。もしかしてあなたの分子模型は引き出しの中にしまったままではありませんか?

分子模型は立体的に分子を眺めるだけではありません。分子の反応性や選択性を予測したり、分子のどこに歪があるのか、安定な配座はどんなものかを、手でいじってある程度予測することができます。しかも私の経験上結構当てになります

 

分子模型をいじっているなんてレベルが低いなんて言わないで、さあ分子模型を取り出してあなたの研究に使っている分子を早速組み立てましょう!

 

関連商品

[amazonjs asin=”B003WTJGIS” locale=”JP” title=”分子模型ストラップ 3個セットA 水・二酸化炭素・硫化水素”][amazonjs asin=”4773501014″ locale=”JP” title=”発泡スチロール球で分子模型をつくろう”][amazonjs asin=”B000U3X1AI” locale=”JP” title=”HGS 立体化学分子模型 アドバンストセット”][amazonjs asin=”490289730X” locale=”JP” title=”HGS分子構造模型 薬学・医学・看護学 学生用セット”]

 

Avatar photo

ペリプラノン

投稿者の記事一覧

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体…
  2. カラムはオープン?フラッシュ?それとも??
  3. 世界の技術進歩を支える四国化成の「独創力」
  4. 「非晶質ニッケルナノ粒子」のユニークな触媒特性
  5. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!
  6. TLCと反応の追跡
  7. 貴金属触媒の活性・硫黄耐性の大幅向上に成功
  8. SNSコンテスト企画『集まれ、みんなのラボのDIY!』~結果発表…

注目情報

ピックアップ記事

  1. 企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介
  2. アメリカで Ph.D. を取る –奨学金を申請するの巻–
  3. 教科書を書き換えるか!?ヘリウムの化合物
  4. 水素化反応を効率化する物質を自動化フロー反応装置で一気に探索
  5. 有機ナノチューブの新規合成法の開発
  6. ジョージ・ホワイトサイズ George M. Whitesides
  7. フローリアクターでペプチド連結法を革新する
  8. 第151回―「生体における金属の新たな活用法を模索する」Matthew Hartings准教授
  9. 第三回 北原武教授ー化学と生物の融合、ものつくり
  10. 眼精疲労、糖尿病の合併症に効くブルーベリー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP