[スポンサーリンク]

一般的な話題

さあ分子模型を取り出して

[スポンサーリンク]

 

コンコン(教授室のドアがノックされる)

教授:やれやれ有機化学の講義の後はいつもこの調子だな

学生:本日の講義で分からないところがあったのですが、質問してもよろしいでしょうか?

教授:もちろんだとも

学生:アレンのπ電子系の説明のところですが、なぜ2つのCH2同士は直交しているのでしょうか?

教授:それは講義の際に説明したはずだが?

学生:板書はノートに書き写したのですが、この点線と太字の結合がどちらに向いているのかがイメージできなくて・・・

教授:なるほど。それではいいものを君にお見せするとしようか・・

 

これは恐らくどこの化学系の大学でも毎年のように繰り返される教授と学生の会話でしょう。

 

今回のポストは月一恒例  Nature Chemistry誌から、Bryn Mawr CollegeMichelle Francl教授のthesisを紹介します。冒頭の部分はFrancl教授の書き出しを参考に筆者により脚色を加えていることをお断りいたしておきます。前回のはこちら

 

Tangible assets

Francl, M. Nature Chem. 5, 147-148 (2012). doi:10.1038/nchem.1585

 

化学とは原子と原子の結合を切ったり、くっつけたりする学問です。でも残念なことに現実ではその様子を見ることは出来ません。よって分子の形や、結合の様子などは想像図を描いているに過ぎません。それを三次元的に可視化したものが分子模型です。原理は単純で原子をボールに見たて、その原子の結合ができる方向に穴を空けておき、結合の代わりに棒を差し込んでいけば出来上がりです。

 

The building of physical models of molecular systems is an art that should not be confined to the introductory courses.

 

大学の初等有機化学では必ずと言っていいほどこの分子模型を使って有機化合物の立体構造を学びます。やはりノートや黒板に書いてあれこれ言うよりも、実際に模型を手にとってメタンの四面体構造を触ったり、鏡像異性体が重なり合わないことを体験する方が教育効果が高いと思います。

かのWatsonとCrickがDNAの二重螺旋の解明に取り組んでいた時、自作の核酸塩基の模型を組み立てていたのは有名なお話ですね。

 

model_1.png

© SCIENCE MUSEUM / SCIENCE & SOCIETY PICTURE LIBRARY 写真はWatson-Crickの模型 論文より引用

 

確かに近年のコンピュータの進化のおかげでタンパク質のような巨大分子の構造を計算によって明らかにすることが比較的短時間でできるようになってきました。世界中のPlayStationを使ったグリッドコンピューティングによってタンパク質の構造を解明したなんてこともありました。もしくは世界中のゲーマーによってタンパク質の構造を解明なんてのもありましたね。

 

数万円で購入できるパーソナルコンピュータの画面上で3Dの分子をグリグリ回したりもできますし、反応の遷移状態を推測するようなこともできるようになっています。

 

There are unrecognized perils in using computer models, particularly for novices.

 

そんな計算は化学において無くてはならない存在であることは疑いの余地はありません。でも、ちょっと待って。もしかしてあなたの分子模型は引き出しの中にしまったままではありませんか?

分子模型は立体的に分子を眺めるだけではありません。分子の反応性や選択性を予測したり、分子のどこに歪があるのか、安定な配座はどんなものかを、手でいじってある程度予測することができます。しかも私の経験上結構当てになります

 

分子模型をいじっているなんてレベルが低いなんて言わないで、さあ分子模型を取り出してあなたの研究に使っている分子を早速組み立てましょう!

 

関連商品

 

The following two tabs change content below.
ペリプラノン

ペリプラノン

有機合成化学が専門。主に天然物化学、ケミカルバイオロジーについて書いていきたいと思います。

関連記事

  1. iPhone/iPodTouchで使える化学アプリケーション
  2. 究極の黒を炭素材料で作る
  3. 化学とウェブのフュージョン
  4. 最期の病:悪液質
  5. 捏造は研究室の中だけの問題か?
  6. 機構解明が次なる一手に繋がった反応開発研究
  7. whileの使い方
  8. 研究室でDIY!~エバポ用真空制御装置をつくろう~ ②

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 自在に分解できるプラスチック:ポリフタルアルデヒド
  2. 酸と塩基のつとめを個別に完遂した反応触媒
  3. 第10回次世代を担う有機化学シンポジウムに参加してきました
  4. 水素結合の発見者は誰?
  5. ≪Excel演習で学ぶ≫化学プロセスにおける研究開発時のコスト試算と事業採算性検討
  6. 奈良坂・プラサード還元 Narasaka-Prasad Reduction
  7. 三枝・伊藤酸化 Saegusa-Ito Oxidation
  8. 勤務地にこだわり理想も叶える!転職に成功したエンジニアの話
  9. 特定の場所の遺伝子を活性化できる新しい分子の開発
  10. 住友製薬-日本化薬、新規抗がん剤で販売提携

関連商品

注目情報

注目情報

最新記事

第40回「分子エレクトロニクスの新たなプラットフォームを目指して」Paul Low教授

第40回の海外化学者インタビューは、ポール・ロウ教授です。英国ダラム大学の化学科に所属(訳注:200…

有機合成化学協会誌2019年12月号:サルコフィトノライド・アミロイドβ・含窒素湾曲π電子系・ペプチド触媒・ジチオールラジアレン

有機合成化学協会が発行する有機合成化学協会誌、2019年12月号がオンライン公開されました。…

窒化ガリウムの低コスト結晶製造装置を開発

科学技術振興機構(JST)は2019年11月15日、東京農工大学と大陽日酸と共同で進める産学共同実用…

第39回「発光ナノ粒子を用いる生物イメージング」Frank van Veggel教授

第39回の海外化学者インタビューは、フランク・ファン・ヴェッゲル教授です。カナダのブリティッシュ・コ…

ロータリーエバポレーターの回転方向で分子の右巻き、左巻きを制御! ―生命のホモキラリティーの起源に踏み込む―

第236回のスポットライトリサーチは、東京大学生産技術研究所 石井研究室で博士研究員をされていた、服…

「あの人は仕事ができる」と評判の人がしている3つのこと

仕事を辞めて、転職をしたいと思う動機の一つとして、「今の会社で評価されていない」という理由がある。し…

Chem-Station Twitter

PAGE TOP