[スポンサーリンク]

化学者のつぶやき

カラムはオープン?フラッシュ?それとも??

[スポンサーリンク]

はじめまして。本年より新たにケムステスタッフに加えて頂きましたgladsaxeといいます。
現在博士課程で天然物の全合成および医薬品を目指した薬理活性化合物の合成研究を行っております。
研究室に博士課程の学生が私しかいないためモチベーション維持と他の方との交流を深めるために応募し、スタッフとして採用されました。

さて、長々と自己紹介をしてしまいましたが、本題に移ります。

みなさんは粗生成物をカラムクロマトグラフィーで分離する際は、オープンカラム、フラッシュカラム、どちらをメインで行いますでしょうか?そもそもカラムクロマトグラフィーってなに?って方はこちら
一般にシリカゲルの粒径を統一した場合、フラッシュカラムよりもオープンカラムの方がシリカゲルに吸着している時間が長くなるため、分離能が上がるといわれています(一方で、長時間おいておくと化合物が拡散するため分離能は落ちます)。
筆者はこれを逆利用することでオープンではなくフラッシュの方が分離しやすいカラム精製を行うこともあります(これに関しては別の機会に書かせて頂きます)。
重力陽圧(ほぼ無圧)のオープンカラム、積極的に陽圧下で行うフラッシュカラムがあるのであれば、陰圧下で行うカラムがあってもよいではありませんか。はい、あるのです。
その一種に、Dry Column Vacuum Chromatography(DCVC)があります。1985年にHarwoodはDry Column Flash Chromatographyと名付けこの手法を報告しましたが、Flash Column Chromatographyの開発者であるStillはFlashの定義を”pressure (not vacuum)”と述べていることから、その後2001年に報告したPedersenはDry Column Vacuum Chromatographyが正しいとし、こちらが定着しています。
まずは以下に特徴をお示しします。

利点

  • カラム径やゲル量、粒径を固定化した場合に(実験室において選択することを想定し限定した条件をお示ししています)理論段数を上げることができないカラムクロマトグラフィーにおいて、理論段数の倍数化[注1]を行うことができるため、非常にスポットが近く分離困難な化合物でも分離できることがある(原理は異なりますがPTLCの多段階上げをカラムで行っていると考えると想像しやすいと思います)
  • ΔRf ≧ 0.1であれば、比較的短時間かつ少量の溶媒量にて分離することが可能である
  • チャージするガラスフィルターの長さや半径を調整することで、大量スケールにも対応する(筆者はTLC多段階上げでもスポット位置がほとんど一緒の2種の化合物がこれで分離できたことがあります)

欠点

  • 装置を組むことが少し面倒であること
  • 原理上スポットの近い化合物を分離する際には非常に時間がかかること
  • シリカを何度も乾かすため、湿式でのみ精製可能な化合物は扱えない
  • 低極性の展開溶媒で溶出するため、乾かす間に溶媒の極性が変わる可能性があり展開溶媒の作りだめは不向きである

では実際にDCVCの行うにあたって操作方法や注意事項などを説明します。

装置

注意事項

  • 使用するシリカゲルは通常用いているカラムのゲルよりもかなり粒径が小さいものを用いる
    (筆者は45~75 μm粒径を使用していますが、PedersenらはMerck社製のSiliica Gel 60(15~45 μm粒径)が好ましいと論文にて記載しています)
  • 密閉系の中で陰圧となりガラスフィルターの足から溶液が落ちていく。
    ダイアフラムポンプのoutから溶媒の蒸気が放出されるため、トラップ装置を組むないしはドラフトチャンバー内で行う
  • 陰圧であるため分液漏斗のコックはテフロン製のものがあればそれを、なければグリースを塗るとより安全(筆者は塗らずとも行うことができています)
  • 陰圧にする際には必ず分液漏斗のコックを閉じておくこと

手順

  1. 装置を組んだら、ガラスフィルターに通常カラムする際と同じように海砂とゲルを積み、上からチャージする
  2. 分液漏斗のコックが閉じていることを確認し、ダイアフラムポンプのスイッチを入れる
  3. ゲルが完全に乾いていたら溶媒を少量入れる
  4. コックが閉じていることを確認し、ダイアフラムポンプのスイッチを入れる
  5. スイッチを切り、分液ロートのコックを開け溶液を落としTLCにてチェックする
    (この際溶液濃度がかなり薄いことが考えられるため、何度も打つか濃縮してから打つ)
  6. 3.~5.を分取が終わるまで繰り返す

なお、受ける器具は図にも示してありますが、直接ナスに受けてそのままエバポレーターへ持って行くことが可能です。
一度貯めておきたい場合はマイヤーを用いるとよいと思います。また、グラジエントをかけた際にはTLCにてRf = 0.5の極性にて目的物が出てくるとの記載があります(筆者の実験的にはずれがあるのでその辺は熟練度の問題もあるかもしれません)。

注釈

[注1] 理論段数の倍数化の意味について

理論段数とは理論段の数であるため、直接的に倍数化されるという意とすると正しくありません。しかし、一般に有効理論段高さ(H)とカラムの長さ(L)および理論段数(N)との間には以下のような式が成立します。


また、これ以外にもvan Deemterの式(ファンディームターの式)と呼ばれる有効理論段高さを充填剤の粒子径や分子拡散、物質移動に関わるパラメーターによって表される式があります(今回の記事にてこれらのパラメータに関して詳細に書いてしまうと本題からそれてしまうため、この辺で止めておきます。もっと知りたい方はこちら)。
今回の場合は充填剤の粒子径を同一とすると、フラッシュカラムクロマトグラフィーに比べ、少量の溶媒にて溶出するため分子拡散や物質移動に関わるパラメーターが小さくなり、結果としてHも小さくなることが考えられます。これより上の式からカラム長を固定化した場合には理論段数が大きくなることが予想されます。
したがって、厳密には理論段高さが小さくなるのであり、直接的に理論段数が大きくなるわけではないと言うことを捕捉させていただきます。
また、同一溶媒量を流した場合に限定する場合には理論段数は変化がないと考えられます。私が記述しましたのは手法を用いた場合の分離までの理論段総数であると捉えていただけると幸いです。

参考文献

  1. L. M. Harwood, Aldrichimica Acta 198518, 25.
  2. D. S. Pedersen, C. Rosenbohn, Synthesis200116, 2431. DOI: 10.1055/s-2001-18722
  3. A Short guide to Dry Column Vacuum Chromatography (DCVC), C. Tortzen
  4. Curly Arrowに紹介された実演動画

【訂正 2017.1.11】本記事の参考文献が間違っておりました。そのため、筆者が指す陰圧下におけるカラム手法の名称はVacuum Dry-Column Chromatographyではなく、Dry Column Vacuum Chromatographyでした。こちらは陰圧下で行うドライカラムであり、名前こそ似ているものの異なるものです。この手法も良い手法ではありますので以下に参考文献を残しておきます。興味のある方はお読み下さい。
E. J. Leopold, J. Org. Chem., 1982, 47,4592. DOI: 10.1021/jo00144a042
理論段数に関する誤解のある表現もございましたため、注釈を付けさせていただきました。
不適切な表現・訂正がございましたことをここにお詫びいたします。

【追記 2017.02.26】コペンハーゲン大学准教授Daniel SejerCurlyによるDCVCの実演動画が掲載されておりました(掲載日は2017.02.20)。参考文献に追記させて頂きましたのでご覧下さい。

まとめ

以上、DCVCの基礎について記しましたがいかがでしたでしょうか。カラムクロマトグラフィーは上記に挙げました文献のみならず多くの文献において”with exparience(経験上)”と述べており、非常に奥深いものです。そのため本記事につきましても手法のご紹介がメインの内容であり筆者の”経験上”の条件であることをお許し下さい。
今回の記事のようにカラムクロマトグラフィーは展開溶媒、シリカゲルの性質、粒径、販売元、積む量やカラム径など様々な要素が絡む精製操作です。
あくまで”経験上”となるかもしれませんが、随時追加していけたらと思います。

関連書籍

[amazonjs asin=”4621077112″ locale=”JP” title=”研究室で役立つ有機実験のナビゲーター―実験ノートのとり方からクロマトグラフィーまで”] [amazonjs asin=”462108948X” locale=”JP” title=”有機合成実験法ハンドブック 第2版”]

gladsaxe

投稿者の記事一覧

コアスタッフで有りながらケムステのファンの一人。薬理化合物の合成・天然物の全合成・反応開発・計算化学を扱っているしがない助教です。学生だったのがもう教員も数年目になってしまいました。時間は早い。。。

関連記事

  1. IKCOC-15 ー今年の秋は京都で国際会議に参加しよう
  2. 有機合成化学協会誌2020年6月号:Chaxine 類・前周期遷…
  3. 免疫応答のシグナル伝達を遮断する新規な免疫抑制剤CPYPP
  4. 「MI×データ科学」コース ~データ科学・AI・量子技術を利用し…
  5. 文献検索サイトをもっと便利に:X-MOLをレビュー
  6. 電気ウナギに学ぶ:柔らかい電池の開発
  7. 大学院生が博士候補生になるまでの道のり【アメリカで Ph.D. …
  8. 触媒と光で脳内のアミロイドβを酸素化

注目情報

ピックアップ記事

  1. 科学はわくわくさせてくれるものーロレアル-ユネスコ賞2015 PartII
  2. 日本人化学者による卓越した化学研究
  3. 電気化学の力で有機色素を自在に塗布する!
  4. ピナー反応 Pinner Reaction
  5. Nazarov環化を利用した全合成研究
  6. 3級C-H結合選択的な触媒的不斉カルベン挿入反応
  7. マテリアルズ・インフォマティクスの基礎知識とよくある誤解
  8. 変幻自在にジアゼンへ!アミンを用いたクロスカップリングの開発
  9. 3Mとはどんな会社? 2021年版
  10. 抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP