[スポンサーリンク]

一般的な話題

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

[スポンサーリンク]

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メーカーで注目されているのがマテリアルズ・インフォマティクス(MI)です。MIによって従来の研究のやり方を大きく変えようとしている企業も少なくありません。

一方でMI技術を導入するためには十分な人材も必要です。企業でMIを推進していくためには外部からMIの専門家を新たに採用するのはもちろんのこと、化学の現場をよく理解している元々の研究者がMI技術を理解することも重要です。そのため各企業ではMIを理解している人材の育成も行われています。

ただ、化学メーカーの研究者は元々プログラミングの専門家ではありません。そんな化学系の企業研究者の方々に向けて、このシリーズではMIの入門となる記事を執筆しています。前回の記事ではMIを導入する目的を明確にすることの重要性、これからMIを始める人はプログラミング言語としてPythonを選ぶのがおすすめというお話をしました。

企業研究者のためのMI入門①:MI導入目的の明確化と使う言語の選定が最初のポイント!

しかし、いきなりPythonなどのプログラミング言語を学ぶのは「難しい」と感じる人もいるかもしれません。「難しい」と思ってしまう理由は様々で「プログラミングにそもそも馴染みがない」、「PythonでMIを実践するやり方がわからない」など、学ばれる方のレベルによっても異なります。そこでこの記事ではPythonを学ぶ上でのポイントとレベルやニーズに合わせたおすすめの参考書を紹介します!

 

Pythonのコードがわからない!そんな人は「何がわからないのか」具体的にしていこう!

Pythonに限らず、プログラミングをはじめたときにありがちな悩みがあります。それは「コードの意味が全くわからない」ということ。しかもこれから私たちが始めるのはMIを実行するためのコードです。そのため自分がPythonの文法で引っかかっているのか、それともMIや機械学習の実装で詰まっているのか、どちらで躓いているのかが分からないという状態に陥ってしまう危険性があります。そこで、まずは「プログラムが分からない」という状態を細分化してみました。

その1:ほとんどの行の意味がわからない

MIに関するPythonの参考書を買って学習をはじめたものの、参考書に書かれているコードがさっぱり分からなくて挫折した・・・。このような経験をした人もいるのではないでしょうか。何を隠そう、私自身が最初はこのような状態でした。

Pythonのコードを見てもほとんどの行の意味がわからない、もしもこのような状態になっているのならばPythonの入門書で勉強してみてはいかがでしょう。早くMIを実践したい!という気持ちを抑えてまず基礎体力を付けていきましょう。急がば回れ、一歩ずつPythonを理解することが将来のMI活用につながるはずですよ。

その2:MIの参考書を読んでも具体的な実装方法が分からない

Pythonの基本的なコードを学んで本格的にMIを実装するぞ!となったが、MIの参考書を読んでも具体的な実装方法が分からない。そのような方々はMI、機械学習でよく使われる手法を勉強する、もしくはPythonでよく使われるライブラリについて学習するのが良いかもしれません。

Pythonの基本的な部分を理解しているならば、ライブラリについても調べたらすぐに使えるようになるはずです。また、MIや機械学習の手法についても、簡単なコンセプトはネット上で調べたらすぐに出てきます。まずはPythonでいろんな手法を実践してみて、作りながら手法も理解してみてはいかがでしょう。

その3:MIの参考書のコードはわかるが使われている手法の数学的な理論が分からない

先程はひとまずPythonでMIを実装してみて、動かしながら理解することを提案しました。一方で「どのような数学的な理論を元にこの手法は構成されているのだろう」と気になる人もいるのではないでしょうか。そんな方はMI、機械学習で使われる手法をじっくり学んでみてはいかがでしょう。理論から学ぶのは時間がかかりますが、手法への理解は圧倒的に深まります。

Pythonを触る上でのちょっとしたチェックポイントや小ネタ

Pythonと各種ライブラリのバージョンに注意

Python本体やライブラリはたまにアップデートされます。もし古いものを使っていた場合、プログラムが動かない可能性があります。また参考書に付属しているコードもどのバージョンで作成されたものか確認が必要です。プログラムが動かないが原因がわからない、というときはバージョンも確認してみましょう。

参考書は紙がおすすめ

デジタル化の流れに反するかもしれませんが、私は紙の参考書を買うのをおすすめしています。一番の理由はメモしやすいということ。コードの意味がわからなかったり、関数の使い方を書いたり、数式の展開過程を追うときなど、参考書を読むとメモしたいことが沢山出てきます。ちょっとしたときにメモするには紙の参考書が便利です。特に最初は分からないことが多いと思うので、参考書にどんどん書き込みを行いましょう。

自分に合う参考書を見つけよう

Pythonを学び始める人が増えていることもあり、数多くの参考書が出版されています。難易度、分量、テイストは様々で、難易度が一緒でもイラストや図が多くてわかりやすいものから、数学的な説明がしっかりしているものまであります。人によって好みも様々かと思います。だからこそ参考書を買うときは事前に中身を確認して自分に合っていそうか確認してみましょう。

とにかく最初はコードを書いてみよう!

説明不要です。プログラミングは「習うより慣れろ」という側面もあるかと思います。まずはどんどんコードを書いて慣れていきましょう!

各レベルでのおすすめの参考書をご紹介!

最後にレベルに応じたおすすめのPython参考書を紹介します。先程述べたとおり、参考書は人によって好みや相性があるのですが、ここでは参考として私自身が使っていた本の中でおすすめを紹介します。

プログラミング自体の経験が少ない方々向け

Pythonの初心者、というよりはプログラミング自体の経験が少ない方に向いています。Pythonの導入方法から丁寧に説明されており、イラストも多く使われているため初心者でも理解しやすいです。内容としてもif文やforループなどの基本的な構文、リストや辞書などPythonにおけるデータの集まりなど、「まずここは抑えたい」という項目が書かれています。

他の言語でプログラミング経験はあるもののPythonは初心者の方々向け

様々なプログラミング言語で出版されている「独習」シリーズ。この本の特徴は自分でコードを書きながら理解していくという点です。Pythonに慣れるためにはコードを書く経験も重要になるため、コードを書き写したり、演習問題でコードを考えていったりできるこの本はPython初心者にとって適切かと思います。私自身、最初はこの本でPythonを勉強しました。

Python初心者に限らず持っておきたい参考書

コンピューターサイエンスの分野ではおなじみのオライリー・ジャパンから出版された本。600ページを超える本で、基本的な内容が網羅的に書かれています。MIに限らずPythonを学びたい人に向いている本です。一つ一つの関数の使い方や特徴などを丁寧に書いているので、何かわからないことが生じたときに頼りになる本です。

Pythonデータ分析で使われるライブラリNumPyやpandasを学びたい方々向け

Pythonでよく用いられるNumPyとpandasというライブラリを利用したデータ分析に関する本です。表題にある2つのライブラリの使い方について学べるのはもちろんのこと、データ分析の現場で必須となるデータ整理、前処理についても学べます。またPythonでグラフやプロットを作成するときに用いるMatplotlibというライブラリについても記載されています。この本では経済学、社会学に関するデータを多く使っていますがデータの前処理、NumPyやpandasの理解という側面ではMIをやる人も学んで損はない内容です。

Pythonや基本的な線形代数を理解してMIを本格的に実践する方向け

表題の通り、化学向けのPythonの本です。MIに必要なデータ解析や機械学習の手法が一通り書かれています。また数学的な理論が説明されていたり、教科書に記載されているコードはGitHub上で公開されていたりといった点も非常に嬉しいところ。ただし自分でコードを書き換えるためにはPythonの基礎を理解する必要があります。また数学的な理論を理解するには基本的な線形代数を知っておく必要もあります。Python、線形代数の基礎を理解して、これからMIを実践する人にとっては手放せない一冊です。

※ケムステでも過去にレビューを行っています。
化学のためのPythonによるデータ解析・機械学習入門

MIの基礎を抑え、更に深く学びたい方々向け

分類問題やデータの前処理、回帰分析やニューラルネットワークといったMI、機械学習に関する技術が一通り書かれています。各種コードが記載されていることはもちろん、数学的な根拠もしっかりと書かれておりMIを深く学びたい人におすすめの本です。ただしPythonと線形代数などの数学ともに基本的な内容を理解している必要があります。ボリュームも非常に大きな本なので、いきなり初心者が読んでもわからない可能性が高いです。まずは基礎を理解した上で更にステップアップしたいときに読むことをおすすめします。

 

今回はPythonをこれから学んでいく企業研究者の方々へ向けて、ちょっとしたポイントとレベル別のおすすめの参考書を紹介しました。プログラミングも、MIの数学的な理論も、理解するためにはまず自分自身の手を動かしてコードや数式を書いていくことが重要です。新しい分野を学ぶとき、一番難しさを感じるのは学びはじめのときかもしれません。ですが、根気強く学び続けることで徐々に理解を深めることができるはずです。基礎から一歩ずつ学んでいきましょう!

 

イラスト引用元:いらすとや
アイキャッチ画像引用元:Unsplash

yt01

yt01

投稿者の記事一覧

新卒で化学メーカーに就職し、今は別のメーカーの研究職。超高速分光→高分子分析→MI、機械学習など専門がコロコロ変わるのが特徴、5年後の専門は何になっているか不明。ラーメンとコーヒーと萌えで身体ができている。

関連記事

  1. 触媒表面の化学反応をナノレベルでマッピング
  2. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  3. 抗ガン天然物インゲノールの超短工程全合成
  4. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  5. 近くにラジカルがいるだけでベンゼンの芳香族性が崩れた!
  6. 林 雄二郎博士に聞く ポットエコノミーの化学
  7. 湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果に…
  8. 化学探偵Mr.キュリー6

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 【書籍】「ルールを変える思考法」から化学的ビジネス理論を学ぶ
  2. 転職を成功させる「人たらし」から学ぶ3つのポイント
  3. 最新有機合成法: 設計と戦略
  4. シス型 ゲラニルゲラニル二リン酸?
  5. 大阪・池田 リチウム電池の実験中に爆発事故
  6. アズワンが第一回ケムステVプレミアレクチャーに協賛しました
  7. 「大津会議」参加体験レポート
  8. 未来のノーベル化学賞候補者
  9. 窒化ガリウムの低コスト結晶製造装置を開発
  10. 秋田英万 Akita Hidetaka

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年9月
« 8月   10月 »
 12345
6789101112
13141516171819
20212223242526
27282930  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに…)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに…)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP