[スポンサーリンク]

化学者のつぶやき

流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!

[スポンサーリンク]

マトリン型ルピンアルカロイドの網羅的な新奇合成法が開発された。生合成仮説を模倣したピリジンの脱芳香環化反応により、四環式骨格の効率的な構築に成功した。

ピリジンの脱芳香族化によるマトリン型ルピンアルカロイドの骨格構築

ルピンアルカロイド(15)はLupinus属植物から単離されたキノリジジン環を基礎骨格とする化合物群である(図1A)。ルピンアルカロイドの一種である(+)-マトリン(2)は転移性ガン細胞の増殖阻害や抗炎症作用、(–)-ソホリジン(4)は抗炎症活性や抗菌作用を示すことが知られている[1]。このようにマトリン型のルピンアルカロイドは有用な薬理作用をもつ一方で、天然からは微量しか得られない[2]。有機合成によってこれらの効率的な量的供給が実現できれば、マトリン型ルピンアルカロイドの生物学的研究の加速につながる。これまでにマトリン(2)の全合成が5例、アロマトリン(3)の全合成が3例、イソマトリン(1)の全合成が1例あるが、類縁体を網羅的に合成する手法はいまだ知られていない[3]

そこで今回、カリフォルニア工科大学のReismanらは種々のマトリン型ルピンアルカロイドにアクセスできる網羅的合成法の開発に挑戦した。まず、著者らは(+)-マトリン(2)の生合成仮説に着目し、これらの四環式骨格の構築を計画した(図1B)[4]。生合成仮説において、2は3分子の(–)-リジン(6)が酵素によって78に変換され、続いて78のマンニッヒ反応からはじまる環化反応、最後に還元と酸化によって得られると提唱されている。この生合成仮説に基づいた、著者らの1の逆合成解析を示す(図1C)。まず、110の還元および位置選択的酸化により誘導できるとした。続いてピリジン(11)が7のシントンになりうると考え、1011と塩化グルタリル(12)より生成した中間体の、脱芳香族的環化反応で得られると考えた。さらに、熱力学的に最も不安定なイソマトリン(1)が合成できれば、1の異性化によって他のマトリン型ルピンアルカロイドに変換できると期待した。すなわち、この合成計画が実現すれば、網羅的なマトリン型ルピンアルカロイドの合成が可能になると考えた。

図1. (A) マトリン型ルピンアルカロイド (B) (+)-マトリン(2)の生合成仮説 (C) (+)-イソマトリン(1)の合成戦略

 

“A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids”
Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E.  J. Am. Chem. Soc. 2022, 144, 15938–15943.
DOI: 10.1021/jacs.2c06584

論文著者の紹介

研究者:Sarah E. Reisman

研究者の経歴:

1997–2001 B.A., Connecticut College, USA (Prof. Timo V. Ovaska)
2001–2006 Ph.D., Yale University, USA (Prof. John L. Wood)
2006–2008 Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2008–2014 Assistant Professor, California Institute of Technology, USA
2014–             Professor, California Institute of Technology, USA
研究内容:天然物合成、Ni触媒を用いたクロスカップリング反応の開発

 

論文の概要

著者らはまず、生合成仮説を模倣した四環式骨格の構築に着手した(図2)。–50 °Cで塩化グルタリル(12)にピリジン(11)を添加した後、室温で攪拌するだけで四環式骨格をもつ10が良好な収率で得られた(1モルスケール)。この機構は協奏的な[4+2]環化付加反応ではなく、ピリジンの脱芳香族化を伴いながら逐次的に反応が進行していることがDFT計算により明らかとなった。さらに1H NMR追跡実験の結果から、11の添加時に反応温度を–50 °Cに保持することで12から中間体13への反応を円滑に進めていることがわかった。続いて構築した四環式骨格の還元によって9を得たのち、9のC15位の選択的酸化を試みた。まず、(+)-マトリン(2)の生合成を参考に酵素(180種)を用いた酸化を試みたが、目的の化合物1は合成できなかった。そこで著者らはKessarらの報告に注目した[5]。この反応では、3級アミンの窒素原子のa位をルイス酸および塩基で選択的に脱プロトン化し、続いて求電子剤を作用させることで置換基を導入できる。MeOBzを求電子剤として、この反応を9に適用したところ、C15位で位置選択的にベンゾイル化することに成功した。続いて、ワンポットで酸化したところ低収率であるものの1を与えた。最後に、1を種々の金属触媒で脱水素化-水素化(異性化)し、マトリン型ルピンアルカロイド25を合成した。特に、Pt触媒による異性化では4が生成し、4の初の全合成を達成した。

図2.マトリン型ルピンアルカロイドの合成経路

 

以上、わずか4、5工程でのマトリン型アルカロイドの網羅的合成法が開発された。そのあまりにも速すぎる合成にピリジンも脱帽(脱芳)してしまいそうであるっ!!

参考文献

  1. (a) Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588 (b) You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 01067. DOI: 10.3389/fphar.2020.01067
  2. Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588
  3. (a) Mandell, L.; Singh, K. P.; Gresham, J. T.; Freeman, W. Total Synthesis of d,l-Matrine. J. Am. Chem. Soc. 1963, 85, 2682−2683. DOI: 10.1021/ja00900a048 (b) Okuda, S.; Yoshimoto, M.; Tsuda, K. Studies on Lupin Alkaloids. IV. Total Syntheses of Optically Active Matrine and Allomatrine. Chem. Pharm. Bull. 1966, 14, 275−279. DOI: 10.1248/cpb.14.275 (c) Chen, J.; Browne, L. J.; Gonnela, N. C. Total Synthesis of (±)-Matrine. J. Chem. Soc., Chem. Commun. 1986, 905−907. DOI: 10.1039/C39860000905 (d) Boiteau, L.; Boivin, J.; Liard, A.; Quiclet-Sire, B.; Zard, S. Z. A Short Synthesis of (±)-Matrine. Angew. Chem., Int. Ed. 1998, 37, 1128− 1131. DOI: 10.1002/(SICI)1521-3773(19980504)37:8<1128::AID-ANIE1128>3.0.CO;2-P (e) Magann, N.; Westley, E.; Sowden, M.; Gardiner, M.; Sherburn, M. Total Synthesis of Matrine Alkaloids; preprint; Chemistry, 2022. DOI: 10.26434/chemrxiv-2022-j87g9(f) Watkin, S. V.; Camp, N. P.; Brown, R. C. D. Total Synthesis of the Tetracyclic Lupin Alkaloid (+)-Allomatrine. Org. Lett. 2013, 15, 4596− 4599. DOI: 10.1021/ol402198n
  4. Bunsupa, S.; Katayama, K.; Ikeura, E.; Oikawa, A.; Toyooka, T.; Saito, K.; Yamazaki, M. Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae. Plant Cell 2012, 24, 1202−1216. DOI: 1105/tpc.112.095885
  5. Kessar, S. V.; Singh, P.; Singh, P. K. N.; Singh, S. K. Facile a-Deprotonation-Electrophilic Substitution of Quinuclidine and DABCO. Chem. Commun. 1999, 1927−1928. DOI: 10.1039/A905359J
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【日産化学 23卒/Zoomウェビナー配信!】START you…
  2. スイスでポスドクはいかが?
  3. 化学研究ライフハック: Firefoxアドオンで化学検索をよりス…
  4. ケムステのライターになって良かったこと
  5. 接着系材料におけるmiHub活用事例とCSサポートのご紹介
  6. 歯車クラッチを光と熱で制御する分子マシン
  7. 鉄触媒反応へのお誘い ~クロスカップリング反応を中心に~
  8. 「ラブ・ケミストリー」の著者にインタビューしました。

注目情報

ピックアップ記事

  1. House-Meinwald転位で立体を操る
  2. 金城 玲 Rei Kinjo
  3. 入門 レアアースの化学 
  4. 合格体験記:知的財産管理技能検定~berg編~
  5. ヘリウム不足いつまで続く?
  6. ヴィ·ドン Vy M. Dong
  7. 化学 美しい原理と恵み (サイエンス・パレット)
  8. 実例で学ぶ化学工学: 課題解決のためのアプローチ
  9. 「科研費の採択を受けていない研究者」へ研究費進呈?
  10. 第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP