[スポンサーリンク]

化学者のつぶやき

流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!

[スポンサーリンク]

マトリン型ルピンアルカロイドの網羅的な新奇合成法が開発された。生合成仮説を模倣したピリジンの脱芳香環化反応により、四環式骨格の効率的な構築に成功した。

ピリジンの脱芳香族化によるマトリン型ルピンアルカロイドの骨格構築

ルピンアルカロイド(15)はLupinus属植物から単離されたキノリジジン環を基礎骨格とする化合物群である(図1A)。ルピンアルカロイドの一種である(+)-マトリン(2)は転移性ガン細胞の増殖阻害や抗炎症作用、(–)-ソホリジン(4)は抗炎症活性や抗菌作用を示すことが知られている[1]。このようにマトリン型のルピンアルカロイドは有用な薬理作用をもつ一方で、天然からは微量しか得られない[2]。有機合成によってこれらの効率的な量的供給が実現できれば、マトリン型ルピンアルカロイドの生物学的研究の加速につながる。これまでにマトリン(2)の全合成が5例、アロマトリン(3)の全合成が3例、イソマトリン(1)の全合成が1例あるが、類縁体を網羅的に合成する手法はいまだ知られていない[3]

そこで今回、カリフォルニア工科大学のReismanらは種々のマトリン型ルピンアルカロイドにアクセスできる網羅的合成法の開発に挑戦した。まず、著者らは(+)-マトリン(2)の生合成仮説に着目し、これらの四環式骨格の構築を計画した(図1B)[4]。生合成仮説において、2は3分子の(–)-リジン(6)が酵素によって78に変換され、続いて78のマンニッヒ反応からはじまる環化反応、最後に還元と酸化によって得られると提唱されている。この生合成仮説に基づいた、著者らの1の逆合成解析を示す(図1C)。まず、110の還元および位置選択的酸化により誘導できるとした。続いてピリジン(11)が7のシントンになりうると考え、1011と塩化グルタリル(12)より生成した中間体の、脱芳香族的環化反応で得られると考えた。さらに、熱力学的に最も不安定なイソマトリン(1)が合成できれば、1の異性化によって他のマトリン型ルピンアルカロイドに変換できると期待した。すなわち、この合成計画が実現すれば、網羅的なマトリン型ルピンアルカロイドの合成が可能になると考えた。

図1. (A) マトリン型ルピンアルカロイド (B) (+)-マトリン(2)の生合成仮説 (C) (+)-イソマトリン(1)の合成戦略

 

“A Pyridine Dearomatization Approach to the Matrine-Type Lupin Alkaloids”
Kerkovius, J. K.; Stegner, A.; Turlik, A.; Lam, P. H.; Houk, K. N.; Reisman, S. E.  J. Am. Chem. Soc. 2022, 144, 15938–15943.
DOI: 10.1021/jacs.2c06584

論文著者の紹介

研究者:Sarah E. Reisman

研究者の経歴:

1997–2001 B.A., Connecticut College, USA (Prof. Timo V. Ovaska)
2001–2006 Ph.D., Yale University, USA (Prof. John L. Wood)
2006–2008 Postdoc, Harvard University, USA (Prof. Eric N. Jacobsen)
2008–2014 Assistant Professor, California Institute of Technology, USA
2014–             Professor, California Institute of Technology, USA
研究内容:天然物合成、Ni触媒を用いたクロスカップリング反応の開発

 

論文の概要

著者らはまず、生合成仮説を模倣した四環式骨格の構築に着手した(図2)。–50 °Cで塩化グルタリル(12)にピリジン(11)を添加した後、室温で攪拌するだけで四環式骨格をもつ10が良好な収率で得られた(1モルスケール)。この機構は協奏的な[4+2]環化付加反応ではなく、ピリジンの脱芳香族化を伴いながら逐次的に反応が進行していることがDFT計算により明らかとなった。さらに1H NMR追跡実験の結果から、11の添加時に反応温度を–50 °Cに保持することで12から中間体13への反応を円滑に進めていることがわかった。続いて構築した四環式骨格の還元によって9を得たのち、9のC15位の選択的酸化を試みた。まず、(+)-マトリン(2)の生合成を参考に酵素(180種)を用いた酸化を試みたが、目的の化合物1は合成できなかった。そこで著者らはKessarらの報告に注目した[5]。この反応では、3級アミンの窒素原子のa位をルイス酸および塩基で選択的に脱プロトン化し、続いて求電子剤を作用させることで置換基を導入できる。MeOBzを求電子剤として、この反応を9に適用したところ、C15位で位置選択的にベンゾイル化することに成功した。続いて、ワンポットで酸化したところ低収率であるものの1を与えた。最後に、1を種々の金属触媒で脱水素化-水素化(異性化)し、マトリン型ルピンアルカロイド25を合成した。特に、Pt触媒による異性化では4が生成し、4の初の全合成を達成した。

図2.マトリン型ルピンアルカロイドの合成経路

 

以上、わずか4、5工程でのマトリン型アルカロイドの網羅的合成法が開発された。そのあまりにも速すぎる合成にピリジンも脱帽(脱芳)してしまいそうであるっ!!

参考文献

  1. (a) Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588 (b) You, L.; Yang, C.; Du, Y.; Wang, W.; Sun, M.; Liu, J.; Ma, B.; Pang, L.; Zeng, Y.; Zhang, Z.; Dong, X.; Yin, X.; Ni, J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 01067. DOI: 10.3389/fphar.2020.01067
  2. Zhang, H.; Chen, L.; Sun, X.; Yang, Q.; Wan, L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. DOI: 10.3389/fphar.2020.00588
  3. (a) Mandell, L.; Singh, K. P.; Gresham, J. T.; Freeman, W. Total Synthesis of d,l-Matrine. J. Am. Chem. Soc. 1963, 85, 2682−2683. DOI: 10.1021/ja00900a048 (b) Okuda, S.; Yoshimoto, M.; Tsuda, K. Studies on Lupin Alkaloids. IV. Total Syntheses of Optically Active Matrine and Allomatrine. Chem. Pharm. Bull. 1966, 14, 275−279. DOI: 10.1248/cpb.14.275 (c) Chen, J.; Browne, L. J.; Gonnela, N. C. Total Synthesis of (±)-Matrine. J. Chem. Soc., Chem. Commun. 1986, 905−907. DOI: 10.1039/C39860000905 (d) Boiteau, L.; Boivin, J.; Liard, A.; Quiclet-Sire, B.; Zard, S. Z. A Short Synthesis of (±)-Matrine. Angew. Chem., Int. Ed. 1998, 37, 1128− 1131. DOI: 10.1002/(SICI)1521-3773(19980504)37:8<1128::AID-ANIE1128>3.0.CO;2-P (e) Magann, N.; Westley, E.; Sowden, M.; Gardiner, M.; Sherburn, M. Total Synthesis of Matrine Alkaloids; preprint; Chemistry, 2022. DOI: 10.26434/chemrxiv-2022-j87g9(f) Watkin, S. V.; Camp, N. P.; Brown, R. C. D. Total Synthesis of the Tetracyclic Lupin Alkaloid (+)-Allomatrine. Org. Lett. 2013, 15, 4596− 4599. DOI: 10.1021/ol402198n
  4. Bunsupa, S.; Katayama, K.; Ikeura, E.; Oikawa, A.; Toyooka, T.; Saito, K.; Yamazaki, M. Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae. Plant Cell 2012, 24, 1202−1216. DOI: 1105/tpc.112.095885
  5. Kessar, S. V.; Singh, P.; Singh, P. K. N.; Singh, S. K. Facile a-Deprotonation-Electrophilic Substitution of Quinuclidine and DABCO. Chem. Commun. 1999, 1927−1928. DOI: 10.1039/A905359J
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生さ…
  2. ヒドロキシ基をスパッと(S)、カット(C)、して(S)、アルキル…
  3. 投票!2018年ノーベル化学賞は誰の手に!?
  4. ご注文は海外大学院ですか?〜出願編〜
  5. 研究室でDIY!~割れないマニホールドをつくろう~
  6. 超塩基に匹敵する強塩基性をもつチタン酸バリウム酸窒化物の合成
  7. アルカロイドの大量生産
  8. 概日リズムを司る天然変性転写因子の阻害剤開発に成功

注目情報

ピックアップ記事

  1. ケーニッヒ・クノール グリコシド化反応 Koenigs-Knorr Glycosidation
  2. ジュリアス・レベック Julius Rebek, Jr.
  3. ヴィクター・アンブロス Victor Ambros
  4. マテリアルズ・インフォマティクスにおける分子生成の基礎
  5. 二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング
  6. 自在に分解できるプラスチック:ポリフタルアルデヒド
  7. ダイハツなど、福島第一原発廃炉に向けハニカム型水素安全触媒を開発 自動車用を応用
  8. 富山化の認知症薬が米でフェーズ1入り
  9. 第176回―「物質表面における有機金属化学」Christophe Copéret教授
  10. なぜ青色LEDがノーベル賞なのか?ー基礎的な研究背景編

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年1月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP