[スポンサーリンク]

化学者のつぶやき

クリック反応の反応機構が覆される

[スポンサーリンク]

 

いわくアルキンは銅イオンで両手に花!そこにアジドが登場

コンピュータマウスをカチッとクリックするかのように狙い通りの組み合わせで確実に起こる化学反応を活用するクリックケミストリー。この分野を代表する代名詞とも言える存在がヒュスゲン環化反応です。

このヒュスゲン環化反応に、従来とは別の反応機構を提案するに至る証拠が、新たに提示されました。ヒュスゲン環化への理解が深まり、反応法のさらなる改良につながると期待されます。

 

ここ10年ほどの間に、クリックケミストリーの考え方は、物理よりの材料化学から、生物よりの創薬化学まで、あらゆる分野で適用され、革新を遂げてきました。あるときは機能付加を目指して高分子材料の中に組み込まれ、あるときは医薬候補分子の標的タンパク質同定を目指したケミカル標識技術に用いられ、その具体例は枚挙にいとまがありません。

クリックケミストリーの理念を最もよく満たす、理想に最も近い反応がヒュスゲン環化でした。1価の銅イオン(Cu+)さえあれば、末端アルキン(-C≡CH)とアジド(-N3)の間で、1時間程度以内で速やかに、しかも水中だろうとおかまいなく、安定して反応が進みます。

GREEN2013click011.PNG

例えばこんなふうに

反応機構はというと、銅原子ひとつが登場するタイプが提唱されていました[2]。末端アルキンの水素原子が脱プロトンし、続いて銅アセチリドが生成、そしてアジドが反応するという手はずになります。

論文[1]より転載

しかし、新たに判明したところによると、ひとつでは説明できない、銅原子はふたつ登場するというのです[1]。

GREEN2013click03.PNG

論文[1]より転載

 

銅原子で両手に花の反応機構

新しい反応機構の提案へといたるそもそもの着眼点はというと、ヨウ化アルキンの反応にあったようです。旧来と同じような反応機構ならば、銅イオンを加えても大して反応は加速しないはず。ところが、実際には反応の速度はそれなりに、しかししっかりと上昇しました[3]。

ここで「銅原子がアルキンのパイ電子と相互作用しているのではないか?」と考えたようです[1]。この仮説の真偽に迫ろうと、切り口を与えたのは、N-ヘテロ環状カルベン(N-heterocyclic carbene; NHC)を活用したアプローチでした。このNHCは、さまざまな金属原子と極めて強く配位結合を形成することが知られています。

実際に、NHCが配位した銅アセチリドを準備。これをアジドとヒュスゲン環化させ、その反応を詳しく解析しました。銅63(63Cu)と銅65(65Cu)とで同位体を使い分け、実験の結果を統合したところによると、銅原子ひとつでは説明できない、銅原子はふたつ登場するだろう、という結論[1]になりました。

 

さて、試薬会社のクリックケミストリー紹介ウェブページにある反応機構の解説も、そのうち新しく書き変わるのでしょうか。ちょっぴりイジワルかもしれませんが、気になるところです。

 

参考文献

  1. “Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions.” Worrell BT, Malik JA, Fokin VV Science 2013 DOI: 10.1126/science.1229506
  2.  “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes.” Rostovtsev VV, Sharpless KB et al. Angew. Chem. Int. Ed. 2002 DOI: 10.1002/1521-3773
  3. “Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes.” Hein JE, Fokin VV et al. Angew. Chem. Int. Ed. 2009 DOI: 10.1002/anie.200903558

関連書籍

[amazonjs asin=”3527320857″ locale=”JP” title=”Click Chemistry: In Chemistry, Biology and Macromolecular Science”]
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 学術オンラインコンテンツ紹介(Sigma-Aldrichバージョ…
  2. 創薬・医療系ベンチャー支援プログラム”BlockbusterTO…
  3. iPhoneやiPadで化学!「デジタル化学辞典」
  4. Bayer Material Scienceの分離独立が語るもの…
  5. レドックス反応場の論理的設計に向けて:酸化電位ギャップ(ΔEox…
  6. 有機レドックスフロー電池 (ORFB)の新展開:高分子を活物質に…
  7. 日化年会に参加しました:たまたま聞いたA講演より
  8. 新規性喪失の例外規定とは?

注目情報

ピックアップ記事

  1. 転職を成功させる「人たらし」から学ぶ3つのポイント
  2. 製薬各社の被災状況
  3. マテリアルズ・インフォマティクスの基礎から実践技術まで学ぶワンストップセミナー
  4. ホウ素アート錯体の1,2-メタレート転位 1,2-Metallate Rearrangement
  5. 透明なカニ・透明な紙:バイオナノファイバーの世界
  6. ナノチューブを引き裂け! ~物理的な意味で~
  7. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  8. ケムステイブニングミキサー2017ー報告
  9. エチレンを離して!
  10. 天然物の構造改訂:30年間信じられていた立体配置が逆だった

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

岩田浩明 Hiroaki IWATA

岩田浩明(いわたひろあき)は、日本のデータサイエンティスト・計算科学者である。鳥取大学医学部 教授。…

人羅勇気 Yuki HITORA

人羅 勇気(ひとら ゆうき, 1987年5月3日-)は、日本の化学者である。熊本大学大学院生命科学研…

榊原康文 Yasubumi SAKAKIBARA

榊原康文(Yasubumi Sakakibara, 1960年5月13日-)は、日本の生命情報科学者…

遺伝子の転写調節因子LmrRの疎水性ポケットを利用した有機触媒反応

こんにちは,熊葛です!研究の面白さの一つに,異なる分野の研究結果を利用することが挙げられるかと思いま…

新規チオ酢酸カリウム基を利用した高速エポキシ開環反応のはなし

Tshozoです。最近エポキシ系材料を使うことになり色々勉強しておりましたところ、これまで関連記…

第52回ケムステVシンポ「生体関連セラミックス科学が切り拓く次世代型材料機能」を開催します!

続けてのケムステVシンポの会告です! 本記事は、第52回ケムステVシンポジウムの開催告知です!…

2024年ノーベル化学賞ケムステ予想当選者発表!

大変長らくお待たせしました! 2024年ノーベル化学賞予想の結果発表です!2…

“試薬の安全な取り扱い”講習動画 のご紹介

日常の試験・研究活動でご使用いただいている試薬は、取り扱い方を誤ると重大な事故や被害を引き起こす原因…

ヤーン·テラー効果 Jahn–Teller effects

縮退した電子状態にある非線形の分子は通常不安定で、分子の対称性を落とすことで縮退を解いた構造が安定で…

鉄、助けてっ(Fe)!アルデヒドのエナンチオ選択的α-アミド化

鉄とキラルなエナミンの協働触媒を用いたアルデヒドのエナンチオ選択的α-アミド化が開発された。可視光照…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP