[スポンサーリンク]

化学者のつぶやき

クリック反応の反応機構が覆される

[スポンサーリンク]

 

いわくアルキンは銅イオンで両手に花!そこにアジドが登場

コンピュータマウスをカチッとクリックするかのように狙い通りの組み合わせで確実に起こる化学反応を活用するクリックケミストリー。この分野を代表する代名詞とも言える存在がヒュスゲン環化反応です。

このヒュスゲン環化反応に、従来とは別の反応機構を提案するに至る証拠が、新たに提示されました。ヒュスゲン環化への理解が深まり、反応法のさらなる改良につながると期待されます。

 

ここ10年ほどの間に、クリックケミストリーの考え方は、物理よりの材料化学から、生物よりの創薬化学まで、あらゆる分野で適用され、革新を遂げてきました。あるときは機能付加を目指して高分子材料の中に組み込まれ、あるときは医薬候補分子の標的タンパク質同定を目指したケミカル標識技術に用いられ、その具体例は枚挙にいとまがありません。

クリックケミストリーの理念を最もよく満たす、理想に最も近い反応がヒュスゲン環化でした。1価の銅イオン(Cu+)さえあれば、末端アルキン(-C≡CH)とアジド(-N3)の間で、1時間程度以内で速やかに、しかも水中だろうとおかまいなく、安定して反応が進みます。

GREEN2013click011.PNG

例えばこんなふうに

反応機構はというと、銅原子ひとつが登場するタイプが提唱されていました[2]。末端アルキンの水素原子が脱プロトンし、続いて銅アセチリドが生成、そしてアジドが反応するという手はずになります。

論文[1]より転載

しかし、新たに判明したところによると、ひとつでは説明できない、銅原子はふたつ登場するというのです[1]。

GREEN2013click03.PNG

論文[1]より転載

 

銅原子で両手に花の反応機構

新しい反応機構の提案へといたるそもそもの着眼点はというと、ヨウ化アルキンの反応にあったようです。旧来と同じような反応機構ならば、銅イオンを加えても大して反応は加速しないはず。ところが、実際には反応の速度はそれなりに、しかししっかりと上昇しました[3]。

ここで「銅原子がアルキンのパイ電子と相互作用しているのではないか?」と考えたようです[1]。この仮説の真偽に迫ろうと、切り口を与えたのは、N-ヘテロ環状カルベン(N-heterocyclic carbene; NHC)を活用したアプローチでした。このNHCは、さまざまな金属原子と極めて強く配位結合を形成することが知られています。

実際に、NHCが配位した銅アセチリドを準備。これをアジドとヒュスゲン環化させ、その反応を詳しく解析しました。銅63(63Cu)と銅65(65Cu)とで同位体を使い分け、実験の結果を統合したところによると、銅原子ひとつでは説明できない、銅原子はふたつ登場するだろう、という結論[1]になりました。

 

さて、試薬会社のクリックケミストリー紹介ウェブページにある反応機構の解説も、そのうち新しく書き変わるのでしょうか。ちょっぴりイジワルかもしれませんが、気になるところです。

 

参考文献

  1. “Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions.” Worrell BT, Malik JA, Fokin VV Science 2013 DOI: 10.1126/science.1229506
  2.  “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes.” Rostovtsev VV, Sharpless KB et al. Angew. Chem. Int. Ed. 2002 DOI: 10.1002/1521-3773
  3. “Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes.” Hein JE, Fokin VV et al. Angew. Chem. Int. Ed. 2009 DOI: 10.1002/anie.200903558

関連書籍

The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. ゴキブリをバイオ燃料電池、そしてセンサーに
  2. Dead Endを回避せよ!「全合成・極限からの一手」③
  3. 光誘起電子移動に基づく直接的脱カルボキシル化反応
  4. 「フラストレイティド・ルイスペアが拓く革新的変換」ミュンスター大…
  5. この輪っか状の分子パないの!
  6. 研究者向けプロフィールサービス徹底比較!
  7. whileの使い方
  8. 分子形状初期化法「T・レックス」の実現~いつでもどこでも誰でも狙…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 分子模型を比べてみた
  2. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学生のためのキャリアセミナー」
  3. マタタビの有効成分のはなし
  4. <アスクル>無許可で危険物保管 消防法で義務づけ
  5. Impact Factorかh-indexか、それとも・・・
  6. ヘリウム新供給プロジェクト、米エアプロダクツ&ケミカルズ社
  7. ノーベル化学賞:下村脩・米ボストン大名誉教授ら3博士に
  8. 向山水和反応 Mukaiyama Hydration
  9. 振動結合:新しい化学結合
  10. 第6回慶應有機化学若手シンポジウム

関連商品

注目情報

注目情報

最新記事

「日産化学」ってどんな会社?

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

有機合成化学協会誌2019年10月号:芳香族性・O-プロパルギルオキシム・塩メタセシス反応・架橋型人工核酸・環状ポリアリレン・1,3-双極子付加環化反応

有機合成化学協会が発行する有機合成化学協会誌、2019年10月号がオンライン公開されました。…

有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リケラボコラボレーション)

以前お知らせしたとおり理系の理想の働き方を考える研究所「リケラボ」とコラボレーションして、特集記事を…

2019年ノーベル化学賞は「リチウムイオン電池」に!

スウェーデン王立科学アカデミーは9日、2019年のノーベル化学賞を、リチウムイオン電池を開発した旭化…

マテリアルズインフォマティクスでリチウムイオン電池の有機電極材料を探索する

第223回のスポットライトリサーチは、沼澤 博道さんにお願い致しました(トップ画像は論文から出典)。…

米陸軍に化学薬品検出スプレーを納入へ

米センサー・システムのフリアーシステムズは、化学兵器として使用されるマスタードガスなどを検出するスプ…

Chem-Station Twitter

PAGE TOP