[スポンサーリンク]

化学者のつぶやき

クリック反応の反応機構が覆される

[スポンサーリンク]

 

いわくアルキンは銅イオンで両手に花!そこにアジドが登場

コンピュータマウスをカチッとクリックするかのように狙い通りの組み合わせで確実に起こる化学反応を活用するクリックケミストリー。この分野を代表する代名詞とも言える存在がヒュスゲン環化反応です。

このヒュスゲン環化反応に、従来とは別の反応機構を提案するに至る証拠が、新たに提示されました。ヒュスゲン環化への理解が深まり、反応法のさらなる改良につながると期待されます。

 

ここ10年ほどの間に、クリックケミストリーの考え方は、物理よりの材料化学から、生物よりの創薬化学まで、あらゆる分野で適用され、革新を遂げてきました。あるときは機能付加を目指して高分子材料の中に組み込まれ、あるときは医薬候補分子の標的タンパク質同定を目指したケミカル標識技術に用いられ、その具体例は枚挙にいとまがありません。

クリックケミストリーの理念を最もよく満たす、理想に最も近い反応がヒュスゲン環化でした。1価の銅イオン(Cu+)さえあれば、末端アルキン(-C≡CH)とアジド(-N3)の間で、1時間程度以内で速やかに、しかも水中だろうとおかまいなく、安定して反応が進みます。

GREEN2013click011.PNG

例えばこんなふうに

反応機構はというと、銅原子ひとつが登場するタイプが提唱されていました[2]。末端アルキンの水素原子が脱プロトンし、続いて銅アセチリドが生成、そしてアジドが反応するという手はずになります。

論文[1]より転載

しかし、新たに判明したところによると、ひとつでは説明できない、銅原子はふたつ登場するというのです[1]。

GREEN2013click03.PNG

論文[1]より転載

 

銅原子で両手に花の反応機構

新しい反応機構の提案へといたるそもそもの着眼点はというと、ヨウ化アルキンの反応にあったようです。旧来と同じような反応機構ならば、銅イオンを加えても大して反応は加速しないはず。ところが、実際には反応の速度はそれなりに、しかししっかりと上昇しました[3]。

ここで「銅原子がアルキンのパイ電子と相互作用しているのではないか?」と考えたようです[1]。この仮説の真偽に迫ろうと、切り口を与えたのは、N-ヘテロ環状カルベン(N-heterocyclic carbene; NHC)を活用したアプローチでした。このNHCは、さまざまな金属原子と極めて強く配位結合を形成することが知られています。

実際に、NHCが配位した銅アセチリドを準備。これをアジドとヒュスゲン環化させ、その反応を詳しく解析しました。銅63(63Cu)と銅65(65Cu)とで同位体を使い分け、実験の結果を統合したところによると、銅原子ひとつでは説明できない、銅原子はふたつ登場するだろう、という結論[1]になりました。

 

さて、試薬会社のクリックケミストリー紹介ウェブページにある反応機構の解説も、そのうち新しく書き変わるのでしょうか。ちょっぴりイジワルかもしれませんが、気になるところです。

 

参考文献

  1. “Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions.” Worrell BT, Malik JA, Fokin VV Science 2013 DOI: 10.1126/science.1229506
  2.  “A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation of Azides and Terminal Alkynes.” Rostovtsev VV, Sharpless KB et al. Angew. Chem. Int. Ed. 2002 DOI: 10.1002/1521-3773
  3. “Copper(I)-Catalyzed Cycloaddition of Organic Azides and 1-Iodoalkynes.” Hein JE, Fokin VV et al. Angew. Chem. Int. Ed. 2009 DOI: 10.1002/anie.200903558

関連書籍

[amazonjs asin=”3527320857″ locale=”JP” title=”Click Chemistry: In Chemistry, Biology and Macromolecular Science”]
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PN…
  2. 過ぎ去りし器具への鎮魂歌
  3. 日本のお家芸、糖転移酵素を触媒とするための簡便糖ドナー合成法
  4. (–)-Daphenezomine AとBの全合成
  5. 【速報】2015年ノーベル化学賞は「DNA修復機構の解明」に!
  6. 有機合成に活躍する器具5選|第1回「有機合成実験テクニック」(リ…
  7. ぼくらを苦しめる「MUST (NOT)」の呪縛
  8. 【ナード研究所】新卒採用情報(2025年卒)

注目情報

ピックアップ記事

  1. 【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス
  2. 第35回安全工学シンポジウム
  3. 生合成を模倣した有機合成
  4. フロリゲンが花咲かせる新局面
  5. 東レ、ナノ構造制御技術を駆使した半導体実装用接着シートを開発
  6. 配座制御が鍵!(–)-Rauvomine Bの全合成
  7. ウクライナ危機で貴ガスの価格が高騰、半導体業界も緊張高まる
  8. 有機化学の理論―学生の質問に答えるノート
  9. 第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!
  10. 元素ネイルワークショップー元素ネイルってなに?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

第58回Vシンポ「天然物フィロソフィ2」を開催します!

第58回ケムステVシンポジウムの開催告知をさせて頂きます!今回のVシンポは、コロナ蔓延の年202…

第76回「目指すは生涯現役!ロマンを追い求めて」櫛田 創 助教

第76回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第75回「デジタル技術は化学研究を革新できるのか?」熊田佳菜子 主任研究員

第75回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第74回「理想的な医薬品原薬の製造法を目指して」細谷 昌弘 サブグループ長

第74回目の研究者インタビューは、第56回ケムステVシンポ「デバイスとともに進化する未来の化学」の講…

第57回ケムステVシンポ「祝ノーベル化学賞!金属有機構造体–MOF」を開催します!

第57回ケムステVシンポは、北川 進 先生らの2025年ノーベル化学賞受賞を記念して…

櫛田 創 Soh Kushida

櫛田 創(くしだそう)は日本の化学者である。筑波大学 数理物質系 物質工学域・助教。専門は物理化学、…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP