[スポンサーリンク]

化学者のつぶやき

水素社会~アンモニアボラン~

[スポンサーリンク]

エネルギー源として利用されている石油は資源量に限りがあり、再利用が難しいうえ燃焼の過程で二酸化炭素やメタンなどの環境に望ましくない(とされる)副生成物を放出します。そこで、代替エネルギーの創出を目指した研究が世界中で積極的に行われています。これら代替エネルギー候補の中で、特に注目を浴びているもののひとつが「水素」です。

 

 

その理由として(1)資源として大量に在り(2)燃焼後の副生成物は水のみ、であることが挙げられます。クリーン&グリーンなのでしょう。

ところが、その燃焼性の高さから、貯蔵や運搬を安全かつ経済的に行うことが難しい、といった決定的な欠点があります。それらを克服すべく、まずは水素を貯蔵でき・また容易に取り出せる物質や技術の開発に焦点が当てられていて、アメリカのエネルギー省(DOE;Department of Energy, USA)では、2015年までに、1リットルあたり81gの水素を利用できる物質・技術の開発が目標に挙げられています[1]。

さて、現在、水素貯蔵物質としてとても期待されている化合物があります。

rk092013000

それが「アンモニアボラン(H3NBH3」。
安定性(非可燃性・非爆発性)が高く
、また分子量が小さい(30.7 g/mol)ため、水素貯蔵能が非常に高い(19.6 wt%)という利点があります(アンモニアボラン1分子から最大3当量のH2を取り出せる)。また、固体であるため貯蔵・運搬が容易であること、も利点の一つです。

今回、アンモニアボランからの水素放出に関する最近の化学について,ざっくり紹介してみたいと思います。

実は、今からおよそ10年前の2004年の時点で既に、不均一系Rh触媒を用いたアンモニアボランからの水素放出反応が報告されていました、が、効率が低く実用的ではありませんでした[2]。

そこで2006年、Goldbergらは、均一系Ir触媒の利用を検討しています[3]。Ir触媒はアルカンの脱水素化に効果的であることが知られていて、アンモニアボランはエタンの等電子体であることから、この反応にも応用できるんじゃね?ってのがどうやらきっかけのようです。この視点、とても大事だと思います。

rk092013001

で、実際に試した結果、1mol%の触媒量を用いると4分程度で1当量の水素を発生できることがわかりました(上図)。この論文を皮切りに、以下のようなRuやIr、PdおよびFe触媒やNi触媒とNHCの組み合わせを用いた同反応がいくつか発表されています[4]。

rk092013002

 

また金属触媒存在下、アンモニアボランを加水分解することで水素を3当量まで放出できる、という報告例もあります(下図)[5]。

rk092013003

これら以外にも、酸や塩基触媒、イオン液体、ナノ-またはメソポーラス-マテリアルを用いる手法などが開発されてきました[6]。

ところが、実用化するためにはまだまだ取り組まなくていけないポイントがいくつも残っています。
(1)水素放出速度(単位時間当たりの発生量)の効率化
(2)触媒量の軽減
(3)燃料廃棄物の問題

問題点(1)(2)については、遅かれ早かれ徐々に改善されていくことと思いますが、一つ、アンモニアボランを利用するうえで致命的な欠点があることが、以前から指摘されていました。それが(3)燃料廃棄物、即ち、水素を発生したのちに生じる副生成物の問題です。

この反応における主な副生成物は、直鎖型や環状の窒化ホウ素 [(BN)n]であり(下図)、やっかいなことに、ものすごーく安定な無機物なのです(ΔH = -59.97kcal/mol)。そのため、アンモニアボランを再生させリサイクル可能な水素貯蔵システムを構築する、という観点からは、望ましくない副生成物であると言えます。

rk092013aaa

 

では、どうすればアンモニアボランを用いつつ、水素貯蔵リサイクルが可能なシステムを構築できるのでしょうか?

その答えはいたってシンプルで、途中で止めちゃえばいいんです、水素の発生を

なぜなら、水素二分子ちょっとを放出した後に残る副生物はポリボラジレン[PB = (BNHx)n](下図)で、そこからなら、理論的にはより少ないエネルギーでアンモニアボランを再生できると推測されているためです。

rk092013004

 

実際、ジチオールとスズ化合物を用いることで、ポリボラジレンからアンモニアボランを再生する反応が、2009年に報告されています(下図)[7]。

rk092013005

そして、2011年には、液体アンモニア中、ヒドラジンとポリボラジレンの反応から、92%もの収率でアンモニアボランを再生できる手法が開発されました。

A. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner III, J. C. Gordon, T. Nakagawa, K. C. Ott, J. P. Robinson, M. Vasiliu. Science, 2011, 311, 1426. doi:10.1126/science.1199003.

 

rk092013006

すなわち、再利用の問題に関する打開策の方が、一足先に進んでいる状況と見てとれます。

今、必要とされているのは、
(1)実用化に要する水素発生速度の達成
(2)アンモニアボランから水素二分子ちょっと~までを選択的にうまく取り出すことができること
(3)副生成物の構造が再利用可能なポリボラジレンとなること

 

rk092013007

これらをクリアできる触媒が開発されれば、水素エネルギー社会の到来も人類にとって夢じゃない?!、と言えなくもなさそうですね。資源・エネルギー問題に翻弄されない世界、その先にどんな化学があるのか、見てみたいものです。

環境やエネルギー関連の話題は、政治的な面から情報制御の的になりがちなトピックですが、そーゆーことから離れて、純粋に化学者・研究者として自分にも何かできることはないか、分野に関わらず一度は深く考えてみたい課題ですね。

 

参考文献
[1] (a) U.S. DOE; 注意(~2MB); http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/national_h2_roadmap.pdf.
(b) 関連文献; 注意(~1MB); http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/hstt_roadmap_june2013.pdf 
[2] C. A. Jaska, I. Manners, J. Am. Chem. Soc. 2004, 126, 9776.
[3] M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, K. I. Goldberg, J. Am. Chem. Soc. 2006, 128, 12048.
[4](a) N. Blaquiere, S. Diallo-Garcia, S. I. Gorelsky, D. A. Black, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 14034.
(b) M. K_b, A. Friedrich, M. Drees, S. Schneider, Angew. Chem. Int. Ed. 2008, 47, 905.
(c) A. Staubitz, A. P. Soto, I. Manners, Angew. Chem. Int. Ed. 2008, 47, 6212.
(d) P. M. Zimmerman, A. Paul, Z. Zhang, C. B. Musgrave, Angew. Chem. Int. Ed. 2009, 48, 2201.
(e) S-K. Kim, W-S. Han, T-J. Kim, T-Y. Kim, S. Nam, M. Mitoraj, L. Piekos, A. Michalak, S-J. Hwang, S. O. Kang, J. Am. Chem. Soc. 2010, 132, 9954.
(f) B. L. Conley, D. Guess, T. J. Williams, J. Am. Chem. Soc. 2011, 133, 14212.
(g) T. Baker, J. C. Gordon, C. W. Hamilton, N. J. Henson, P-H. Lin, S. Maguire, M. Murugesu, B. L. Scott, N. C. Smythe, J. Am. Chem. Soc. 2012, 134, 5598.
[5] Selected examples(a) M. Chandra, Q. Xu, J. Power Sources 2006,156, 190.
(b) Q. Xu, M. Chandra, J. Power Sources 2006, 163, 364.
(c) T. J. Clark, G. R. Whittell, I. Manners, Inorg. Chem. 2007, 46, 7522.
(d) P. V. Ramachandran, P. D. Gagare, Inorg. Chem. 2007, 46, 7810.
(e) S. B. Kalidindi, M. Indirani, B. R. Jagirdar, Inorg. Chem. 2008, 47, 7424.
[6] A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079.
[7](a) B. L. Davis, D. A. Dixon, E. B. Garner, J. C. Gordon, M. H. Matus, B. Scott, F. H. Stephens, Angew. Chem., Int. Ed. 2009, 48, 6812.
(b) A. D. Sutton, B. L. Davis, K. X. Bhattacharyya, B. D. Ellis, J. C. Gordon, P. P. Power, Chem. Commun. 2010, 46, 148.
関連参照サイト
[1] http://www.rsc.org/Publishing/ChemScience/Volume/2008/08/Borane_fuels.asp

 

 

 

関連記事

  1. 「人工金属酵素によるSystems Catalysisと細胞内触…
  2. 結晶構造データは論文か?CSD Communicationsの公…
  3. 特長のある豊富な設備:ライトケミカル工業
  4. 【マイクロ波化学(株) 石油化学/プラスチック業界向けウェビナー…
  5. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる…
  6. GRE Chemistry 受験報告 –試験当日·結果発表編–
  7. 共有結合で標的タンパク質を高選択的に機能阻害する新しいドラッグデ…
  8. 樹脂コンパウンド材料におけるマテリアルズ・インフォマティクスの活…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ゼロから学ぶ機械学習【化学徒の機械学習】
  2. ジョーンズ酸化 Jones Oxidation
  3. 第130回―「無機薄膜成長法を指向した有機金属化学」Lisa McElwee-White教授
  4. #環境 #SDGs マイクロ波によるサステナブルなものづくり (プラ分解、フロー合成、フィルム、乾燥、焼成)
  5. 東レ科学技術賞:東京大学大学院理学系研究科奈良坂教授受賞
  6. 巧みに骨格構築!Daphgracilineの全合成
  7. 学振申請書を磨き上げるポイント ~自己評価欄 編(後編)~
  8. 化学物質研究機構、プロテオーム解析用超高感度カラム開発
  9. 留学せずに英語をマスターできるかやってみた(5年目)(留学中編)
  10. 試薬の構造式検索 ~便利な機能と使い方~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2013年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

注目情報

最新記事

材料開発の変革をリードするスタートアップのデータサイエンティストとは?

開催日:2023/06/08  申し込みはこちら■開催概要MI-6はこの度シリーズAラウ…

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

開催日:2023/05/31 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功

第521回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?

開催日:2023/06/01 申し込みはこちら■開催概要MI-6はこの度シリーズAラウン…

種子島沖海底泥火山における表層堆積物中の希ガスを用いた流体の起源深度の推定

第520回のスポットライトリサーチは、琉球大学大学院 理工学研究科海洋自然科学専攻 地殻内部水圏地化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP