[スポンサーリンク]

スポットライトリサーチ

世界初の気体可塑性エラストマー!!

[スポンサーリンク]

第211回のスポットライトリサーチは、岐阜大学大学院 自然科学技術研究科・平 健二郎さん にお願いしました。

平さんの所属する沓水・三輪研究室で興味を持って取り組まれているテーマの一つに、イオン官能基を含む高分子材料(アイオノマー)があります。適切に設計したアイオノマーが示すかつてない特性=「気体可塑性」が今回の成果となっており、Nat. Commun.誌原著論文、およびプレスリリースとして公開されています。

“A gas-plastic elastomer that quickly self-heals damage with the aid of CO2 gas”
Miwa, Y.; Taira, K.; Kurachi, J.; Udagawa, T.; Kutsumizu, S. Nat. Commun. 2019, 10, 1828. doi:10.1038/s41467-019-09826-2

研究室を主宰されています三輪洋平 准教授から、平さんについて以下の人物評を頂いております。

とにかく粘り強い平君。彼の粘り強さが、新しい現象の発見と今回のプレスリリースに結び付きました。平君のコメントにもあるとおり、彼が最初に空気中と比べて窒素中でエラストマーが力学的に強くなるという結果を報告してきたとき、私にはにわかには信じられませんでした。その差はわずかなものでしたし、気体の種類によってエラストマーの強さが変わるというのは、当時の私にとっては“非常識”な結果でした。しかし、丁寧に実験をして粘り強く結果をしめす平君に、遂に白旗を上げることになりました。持ち前の粘り強さに磨きをかけて、さらに活躍してくれることを期待しています。

それでは今回も、現場からのコメントをお楽しみ下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?

ポリジメチルシロキサン(PDMS)を骨格としたイオン性架橋エラストマーが、二酸化炭素(CO2)によって軟化する現象を発見しました。すなわち、気体によって可塑化するエラストマーです。私達は、このCO2による可塑特性が、エラストマーの自己修復性の促進に効果があることを発見しました。
本研究では、イオン成分の凝集を利用して架橋したイオン性PDMSエラストマーを設計しました。PDMSに導入された、ナトリウムによって中和された、または未中和のカルボキシ基は凝集して直径2 nm程度のイオン凝集体を形成します。このイオン凝集体が物理的にPDMSを架橋します。しかし、イオン凝集体の拘束力は、PDMS鎖の拡散を完全に抑制するほど強くありません。そのために、中和された、または未中和のカルボキシ基が一時的にイオン凝集体から引き抜かれて、別の凝集体へ移動する現象が、PDMS主鎖の拡散をともなって起こります。すなわち、架橋構造の組み換えが自発的に起こります。この架橋構造の組み換えは、自己修復性や強靭化などの様々な機能をエラストマーにもたらします。この組み換えは空気中でもゆっくりと起こるために、このエラストマーは室温で自発的に自己修復しますが、CO2ガス中では自己修復が10倍近く加速されます。また、CO2ガスを利用することで、-20℃という寒冷環境でも自己修復を誘起することが可能になります。これは、CO2ガスがイオン凝集体中に溶け込むことで軟化させ、結果的にエラストマーの可塑化をもたらすためです。また、重要なこととして、雰囲気を空気に戻すことでエラストマーは強度を回復します。すなわち、世界初となる気体可塑性エラストマーを開発することができました。

図:イオン性PDMSの概略図。イオン成分が凝集して架橋構造を形成するために透明度の高いエラストマーが得られる。このエラストマーでは、室温で架橋構造の自発的な組み換えが起きる。二酸化炭素中ではこの組み換えが加速されるために、エラストマーが可塑化される。

 

Q2. 研究テーマについて自分なりに工夫したところ、思い入れがあるところを教えてください。

気体可塑性のきっかけを発見したところに思い入れがあります。このエラストマーは湿気によっても軟化します。そのために、引張測定の結果がその影響を受けてしまうことが問題としてあげられていました。そこで乾燥窒素中で引張測定をおこなったところ、わずかですがエラストマーが強くなったことに偶然気づきました。最初にこのデータを報告したとき、先生は、「湿気の影響じゃないの?」と言って信用してくれませんでした。しかし、サンプリングに細心の注意を払いながら何度も測定を繰り返し、再現性を確認することができてやっと信用してもらうことができました。この気づきがあったおかげで、二酸化炭素中で測定してみることになり、気体可塑性の発見に結びつけることができました。今思うと、日ごろから先生が口を酸っぱくして言っている、「良い結果ほど疑え」という言葉を実際に体験することができたと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

学部四年生になって、研究室配属されてから卒論提出の一ヶ月前まで、合成スキームの確立に四苦八苦したことです。加熱をし過ぎてサンプルを劣化させたり、真空乾燥中に突沸を起こして大幅にサンプルを失ったり、最適な中和度がわかるまでの一喜一憂など、失敗の繰り返しでした(今となっては良い思い出ですが)。しかしこの時にめげずに、問題点を先生と議論しながらトライ&エラーを繰り返したことで、目的のサンプルを得ることができました。

Q4. 将来は化学とどうかかわっていきたいですか?

私は研究をしていくうえで、この研究がどのように応用できるかを考えながら研究してきました。この材料が将来どのように応用されて、私たちの身の回りのどの製品に使われるのかを想像することは、私にとって楽しいと感じると同時に、研究へのモチベーションにもなっています。これからも、自分が感じる楽しさを研究の中で探しながら己を研鑽していき、化学の発展に貢献していきたいです。

Q5. 最後に、読者のみなさんにメッセージをお願いします。

研究に行き詰ったとき、同じ研究室や、異分野の研究をしている友人らに、抱えている問題を相談することで解決へのヒントをもらうことがありました。また、ご飯を一緒に食べに行ったり、遊んだりすることで気分転換させてくれることもありました。私にとって彼らの存在は大きく、研究を続けるうえで心の支えになってくれています。皆さんの周りにも辛いこと、楽しいことを共有してくれる友人がいらっしゃると思います。その方々との関係を、是非大切にしていただきたいです。

最後に、実験をするにあたり多大なご指導を賜りました三輪洋平准教授、沓水祥一教授をはじめ、友人の皆様に深く感謝申し上げ、本寄稿の結びとさせていただきます。

研究者の略歴

名前:平 健二郎
所属:岐阜大学大学院 自然科学技術研究科 物質・ものづくり工学専攻 物質化学領域 修士課程2年(沓水・三輪研究室

研究テーマ:イオン性高分子の合成・物性測定

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性…
  2. 科学は夢!ロレアル-ユネスコ女性科学者日本奨励賞2015
  3. リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!
  4. スペクトルから化合物を検索「KnowItAll」
  5. 計算化学者は見下されているのか? Part 1
  6. 合成化学者のための固体DNP-NMR
  7. 分子機械を組み合わせてアメーバ型分子ロボットを作製
  8. Arcutine類の全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2009年10大化学ニュース
  2. 2005年ノーベル化学賞『オレフィンメタセシス反応の開発』
  3. 自励振動ポリマーブラシ表面の創製
  4. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナノ粒子合成、フィルム表面処理/乾燥/接着/剥離、ポリマー乾燥/焼成など)
  5. 研究室でDIY!~光反応装置をつくろう~
  6. アルケニルアミドに2つアリールを入れる
  7. TEMPOよりも高活性なアルコール酸化触媒
  8. 次世代分離膜の開発、実用化動向と用途展開 完全網羅セミナー
  9. ヒト遺伝子の ヒット・ランキング
  10. 禅問答のススメ ~非論理に向き合う~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
« 7月   9月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

アブラナ科植物の自家不和合性をタンパク質複合体の観点から解明:天然でも希少なSP11タンパク質の立体構造予測を踏まえて

第340回のスポットライトリサーチは、東京大学 大学院農学生命科学研究科の森脇 由隆…

オンライン講演会に参加してみた~学部生の挑戦記録~

hodaです。講演会やシンポジウムのオンライン化によって学部生でもいろいろな講演会にボタンひとつで参…

令和3年度に登録された未来技術遺産が発表 ~フィッシャー・トロプシュ法や記憶媒体に関する資料が登録~

国立科学博物館は、平成20年度から重要科学技術史資料(愛称:未来技術遺産)の登録を実施しています。令…

企業研究者のためのMI入門②:Pythonを学ぶ上でのポイントとおすすめの参考書ご紹介

現在、多くの企業がデジタルトランスフォーメーション(DX)による生産性向上を試みています。特に化学メ…

女子の強い味方、美味しいチョコレート作りを助ける化合物が見出される

チョコレートの製造過程でリン脂質分子を添加するという方法を用いれば、複雑なテンパリング(加熱・せん断…

火力発電所排気ガスや空気から尿素誘導体の直接合成に成功

第339回のスポットライトリサーチは、産業技術総合研究所 触媒化学融合研究センタ…

CV測定器を使ってみた

「電気化学」と聞くと、難しい数式が出てきて何やらとっつきづらいというイメージがある人が多いと思います…

知られざる法科学技術の世界

皆さんは、日本法科学技術学会という学会をご存じでしょうか。法科学は、犯罪における問題を”科学と技術”…

有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環

有機合成化学協会が発行する有機合成化学協会誌、2021年9月号がオンライン公開されました。9…

イグノーベル賞2021が発表:今年は化学賞あり!

2021年9月9日、「人々を笑わせ考えさせた業績」に送られるイグノーベル賞の第31回授賞式が行われま…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP