[スポンサーリンク]

スポットライトリサーチ

世界初の気体可塑性エラストマー!!

[スポンサーリンク]

第211回のスポットライトリサーチは、岐阜大学大学院 自然科学技術研究科・平 健二郎さん にお願いしました。

平さんの所属する沓水・三輪研究室で興味を持って取り組まれているテーマの一つに、イオン官能基を含む高分子材料(アイオノマー)があります。適切に設計したアイオノマーが示すかつてない特性=「気体可塑性」が今回の成果となっており、Nat. Commun.誌原著論文、およびプレスリリースとして公開されています。

“A gas-plastic elastomer that quickly self-heals damage with the aid of CO2 gas”
Miwa, Y.; Taira, K.; Kurachi, J.; Udagawa, T.; Kutsumizu, S. Nat. Commun. 2019, 10, 1828. doi:10.1038/s41467-019-09826-2

研究室を主宰されています三輪洋平 准教授から、平さんについて以下の人物評を頂いております。

とにかく粘り強い平君。彼の粘り強さが、新しい現象の発見と今回のプレスリリースに結び付きました。平君のコメントにもあるとおり、彼が最初に空気中と比べて窒素中でエラストマーが力学的に強くなるという結果を報告してきたとき、私にはにわかには信じられませんでした。その差はわずかなものでしたし、気体の種類によってエラストマーの強さが変わるというのは、当時の私にとっては“非常識”な結果でした。しかし、丁寧に実験をして粘り強く結果をしめす平君に、遂に白旗を上げることになりました。持ち前の粘り強さに磨きをかけて、さらに活躍してくれることを期待しています。

それでは今回も、現場からのコメントをお楽しみ下さい!

Q1. 今回プレスリリースとなったのはどんな研究ですか?

ポリジメチルシロキサン(PDMS)を骨格としたイオン性架橋エラストマーが、二酸化炭素(CO2)によって軟化する現象を発見しました。すなわち、気体によって可塑化するエラストマーです。私達は、このCO2による可塑特性が、エラストマーの自己修復性の促進に効果があることを発見しました。
本研究では、イオン成分の凝集を利用して架橋したイオン性PDMSエラストマーを設計しました。PDMSに導入された、ナトリウムによって中和された、または未中和のカルボキシ基は凝集して直径2 nm程度のイオン凝集体を形成します。このイオン凝集体が物理的にPDMSを架橋します。しかし、イオン凝集体の拘束力は、PDMS鎖の拡散を完全に抑制するほど強くありません。そのために、中和された、または未中和のカルボキシ基が一時的にイオン凝集体から引き抜かれて、別の凝集体へ移動する現象が、PDMS主鎖の拡散をともなって起こります。すなわち、架橋構造の組み換えが自発的に起こります。この架橋構造の組み換えは、自己修復性や強靭化などの様々な機能をエラストマーにもたらします。この組み換えは空気中でもゆっくりと起こるために、このエラストマーは室温で自発的に自己修復しますが、CO2ガス中では自己修復が10倍近く加速されます。また、CO2ガスを利用することで、-20℃という寒冷環境でも自己修復を誘起することが可能になります。これは、CO2ガスがイオン凝集体中に溶け込むことで軟化させ、結果的にエラストマーの可塑化をもたらすためです。また、重要なこととして、雰囲気を空気に戻すことでエラストマーは強度を回復します。すなわち、世界初となる気体可塑性エラストマーを開発することができました。

図:イオン性PDMSの概略図。イオン成分が凝集して架橋構造を形成するために透明度の高いエラストマーが得られる。このエラストマーでは、室温で架橋構造の自発的な組み換えが起きる。二酸化炭素中ではこの組み換えが加速されるために、エラストマーが可塑化される。

 

Q2. 研究テーマについて自分なりに工夫したところ、思い入れがあるところを教えてください。

気体可塑性のきっかけを発見したところに思い入れがあります。このエラストマーは湿気によっても軟化します。そのために、引張測定の結果がその影響を受けてしまうことが問題としてあげられていました。そこで乾燥窒素中で引張測定をおこなったところ、わずかですがエラストマーが強くなったことに偶然気づきました。最初にこのデータを報告したとき、先生は、「湿気の影響じゃないの?」と言って信用してくれませんでした。しかし、サンプリングに細心の注意を払いながら何度も測定を繰り返し、再現性を確認することができてやっと信用してもらうことができました。この気づきがあったおかげで、二酸化炭素中で測定してみることになり、気体可塑性の発見に結びつけることができました。今思うと、日ごろから先生が口を酸っぱくして言っている、「良い結果ほど疑え」という言葉を実際に体験することができたと思います。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

学部四年生になって、研究室配属されてから卒論提出の一ヶ月前まで、合成スキームの確立に四苦八苦したことです。加熱をし過ぎてサンプルを劣化させたり、真空乾燥中に突沸を起こして大幅にサンプルを失ったり、最適な中和度がわかるまでの一喜一憂など、失敗の繰り返しでした(今となっては良い思い出ですが)。しかしこの時にめげずに、問題点を先生と議論しながらトライ&エラーを繰り返したことで、目的のサンプルを得ることができました。

Q4. 将来は化学とどうかかわっていきたいですか?

私は研究をしていくうえで、この研究がどのように応用できるかを考えながら研究してきました。この材料が将来どのように応用されて、私たちの身の回りのどの製品に使われるのかを想像することは、私にとって楽しいと感じると同時に、研究へのモチベーションにもなっています。これからも、自分が感じる楽しさを研究の中で探しながら己を研鑽していき、化学の発展に貢献していきたいです。

Q5. 最後に、読者のみなさんにメッセージをお願いします。

研究に行き詰ったとき、同じ研究室や、異分野の研究をしている友人らに、抱えている問題を相談することで解決へのヒントをもらうことがありました。また、ご飯を一緒に食べに行ったり、遊んだりすることで気分転換させてくれることもありました。私にとって彼らの存在は大きく、研究を続けるうえで心の支えになってくれています。皆さんの周りにも辛いこと、楽しいことを共有してくれる友人がいらっしゃると思います。その方々との関係を、是非大切にしていただきたいです。

最後に、実験をするにあたり多大なご指導を賜りました三輪洋平准教授、沓水祥一教授をはじめ、友人の皆様に深く感謝申し上げ、本寄稿の結びとさせていただきます。

研究者の略歴

名前:平 健二郎
所属:岐阜大学大学院 自然科学技術研究科 物質・ものづくり工学専攻 物質化学領域 修士課程2年(沓水・三輪研究室

研究テーマ:イオン性高分子の合成・物性測定

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 学部4年間の教育を振り返る
  2. 創薬に求められる構造~sp3炭素の重要性~
  3. C70の中に水分子を閉じ込める
  4. Rice cooker
  5. V字型分子が実現した固体状態の優れた光物性
  6. インドの化学ってどうよ
  7. 分子1つがレバースイッチとして働いた!
  8. 「遷移金属を用いてタンパク質を選択的に修飾する」ライス大学・Ba…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学の成果で脚光を浴びた小・中・高校生たち
  2. ジョンソン オレフィン合成 Johnson Olefination
  3. 2010年ノーベル化学賞ーお祭り編
  4. 界面活性剤 / surface-active agent, surfactant
  5. 新人化学者の失敗ランキング
  6. ヴァリンダー・アガーウォール Varinder K. Aggarwal
  7. ケムステ版・ノーベル化学賞候補者リスト【2019年版】
  8. 徒然なるままにセンター試験を解いてみた
  9. Carl Boschの人生 その6
  10. 超強塩基触媒によるスチレンのアルコール付加反応

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

アズワンが第一回ケムステVプレミアレクチャーに協賛しました

さて先日お知らせいたしましたが、ケムステVプレミアクチャーという新しい動画配信コンテンツをはじめます…

化学者のためのエレクトロニクス講座~代表的な半導体素子編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第121回―「亜鉛勾配を検出する蛍光分子の開発」Lei Zhu教授

第121回の海外化学者インタビューは、Lei Zhu教授です。フロリダ州立大学 化学・生化学科で、亜…

高知市で「化学界の権威」を紹介する展示が開催中

明治から昭和にかけて“化学界の権威”として活躍した高知出身の化学者=近重真澄を紹介する展示が高知市で…

ケムステバーチャルプレミアレクチャーの放送開始決定!

主に最先端化学に関する講演者をテーマ別で招待しオンライン講演を行っていただくケムステバーチャルシンポ…

分子運動を世界最高速ムービーで捉える!

第275回のスポットライトリサーチは、東京大学大学院理学系研究科化学専攻 博士課程・清水俊樹 さんに…

「未来博士3分間コンペティション2020」の挑戦者を募集

科学技術人材育成のコンソーシアムの構築事業(次世代研究者育成プログラム)「未来を拓く地方協奏プラ…

イグノーベル賞2020が発表 ただし化学賞は無し!

「人々を笑わせ、そして考えさせてくれる業績」に対して贈られるノーベル賞のパロディである「イグノーベル…

Chem-Station Twitter

PAGE TOP