[スポンサーリンク]

化学者のつぶやき

アザジラクチンの全合成

[スポンサーリンク]

Synthesis of Azadirachtin: A Long but Successful Journey Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer,  A.; Maslen, S. L.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7629. DOI:10.1002/anie.200703027
A Relay Route for the Synthesis of Azadirachtin Veitch, G. E.; Beckmann, E.; Burke, B. j.; Boyer, A.; Ayats, C.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7633. DOI:10.1002/anie.200703027

(ややいまさら感がありますが) ケンブリッジ大学・Steven Leyらによって先日達成された、アザジラクチンの全合成について紹介します。

冒頭の構造式を見てもらえれば分かりますが、縮環構造・高酸化数・16の不斉炭素(うち4級炭素が4つ)と、とんでもなく複雑な構造をしている化合物です。最終物は光やら酸素やらいろんなものに不安定だそうで、「これを合成しよう!」と思ったとしても、もはやどこら辺から手をつけて良いのかすら分かりません。2007年に全合成された天然物の中では、疑いなく最難化合物の一つといえるでしょう。

ともかくルートの収束性を高める戦略に基づけば、下のような結合で切る逆合成をして、フラグメント同士をくっつけるやり方がよさそうです。 ただし、この結合は、とてつもなく混み合った四置換炭素同士を結んでいます。Leyらも同様の逆合成をしていますが、やはり最も困難を極めたのは「どうやってこの炭素-炭素結合をうまく作るか?」、ということでした。実際ありとあらゆる方法を試しているようですが、どれもこれもうまくいかず相当な苦戦を強いられたようです。

唯一上手くいったやり方は、下図のようにプロパルギル位に脱離基を持つピランフラグメントを用いる方法です。反応点周りが立体的に空いていることが何にも増して重要だったようです。

 

azadirachtin2.gif

では、実際のルートを見てみましょう。デカリンフラグメントの基礎骨格は、分子内Diels-Alder反応およびアルドール型環化を用いて上手く構築しています。シリル基はDiels-Alder反応の選択性発現に重要であるとともに、後に玉尾-Fleming酸化によってヒドロキシル基を導入するための足がかりになっています。

azadirachtin3.gif

 いよいよフラグメントカップリングです。アルキル化によって結合を作ろうとしましたが、得られてきたものは、エノールの酸素原子上で反応が起こった化合物でした(このあたりからも一筋縄ではいかないことが見て取れると思います)。

 ともあれフラグメント間で結合が作れたので、これを足がかりとしたClaisen転位によって炭素-炭素結合形成を試みています。熱的にも反応がいったようですが、Tosteらによって開発されたAu(I)触媒を用いるプロパルギルClaisen転位(Saucy-Marbett転位)が有効だったようです。最新合成技術の発展がどれだけ凄いかを示す好例といえるでしょう。

 その後もかなりハードル高い変換が続きます。Barton-McCombie条件によってラジカル環化反応を行い右半分の炭素骨格構築に成功しています。続いて混み合った位置にエポキシ化を行っています。温度(100℃以上)・時間(7日間)・ラジカルスカベンジャー添加という突き詰めた条件になっており、ここ1ステップだけで気が遠くなる検討が重ねられていることが想像できます。これでDegradation Studiesで得られる化合物と同じものが得られ、あとは逆行ルートに従って合成を進め、アザジラクチンの全合成を完了しています。

azadirachtin4.gif

 40人以上の共同研究者、22年という長い年月をかけて達成された64段階の全合成ルートは、どのような価値をもたらすのでしょうか?これについてはほうぼうの雑誌で批評記事が掲載されており、必ずしも肯定的な意見ばかりでもないようです。

ともあれ、最先端の合成技術を結集してもこれほどまでに大変なルートになる現実を鑑みれば、現状の有機合成における課題をいくつも見いだせるように思います。少なくとも「縮環構造・高酸化数・連続不斉炭素を持つ化合物を実用合成可能なレベルには、合成技術の方が到達できていない」ということはいえそうです。

では、どうすれば効率よく合成できるようになるのか?はたまた、それは追い求め続けるべき課題なのか? ―――それを各々で判断し、考え、決められること、それが学術研究の持ちうる自由さです。

その自由さを謳歌しうる限り、研究者たちはどういう風に考え、有機合成はどう進展していくのか?全ての時代を通じて、それは興味深い思索となるでしょう。

 関連リンク

Azadirachtin (Wikipedia)

ニーム(インドセンダン)

アザジラクチン・22年目の陥落 (有機化学美術館・分館)

The Ley Group homepage ケンブリッジ大・レイ研究室のホームページ

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リチウムイオン電池のはなし~1~
  2. 局所的な“粘度”をプローブする羽ばたくFLAP蛍光分子
  3. 【書籍】クロスカップリング反応 基礎と産業応用
  4. スーパーなパーティクル ースーパーパーティクルー
  5. 第1回ACCELシンポジウムを聴講してきました
  6. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  7. ベンゼン環が壊れた?!ー小分子を活性化するー
  8. 天然にある中間体から多様な医薬候補を創り出す

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 共役はなぜ起こる?
  2. 齊藤 尚平 Shohei Saito
  3. 化合物と結合したタンパク質の熱安定性変化をプロテオームワイドに解析
  4. 三菱化学が有機太陽電池事業に参入
  5. natureasia.com & Natureダイジェスト オンラインセミナー開催
  6. 病理学的知見にもとづく化学物質の有害性評価
  7. 光学迷彩をまとう海洋生物―その仕組みに迫る
  8. マラリア治療の新薬の登場を歓迎する
  9. 手術中にガン組織を見分ける標識試薬
  10. ボタン一つで化合物を自動合成できる機械

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

第120回―「医薬につながる複雑な天然物を全合成する」Richmond Sarpong教授

第120回の海外化学者インタビューは、リッチモンド・サーポン教授です。カリフォルニア大学バークレー校…

DNAナノ構造体が誘起・制御する液-液相分離

第274回のスポットライトリサーチは、佐藤佑介 博士にお願いしました。液-液相分離は近年の一…

常圧核還元(水添)触媒 Rh-Pt/(DMPSi-Al2O3)

一般的な特長Rh-Pt/(DMPSi-Al2O3)は、優れた活性を示す水素還元(水添)触媒です。…

世界最高の耐久性を示すプロパン脱水素触媒

第273回のスポットライトリサーチは、北海道大学触媒科学研究所・中谷勇希さんにお願いしました。…

第119回―「腸内細菌叢の研究と化学プロテオミクス」Aaron Wright博士

第119回の海外化学者インタビューは、アーロン・ライト博士です。パシフィック・ノースウエスト国立研究…

化学者のためのエレクトロニクス講座~化合物半導体編

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

次世代電池の開発と市場予測について調査結果を発表

この程、TPC マーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、 次…

有機合成化学協会誌2020年9月号:キラルナフタレン多量体・PNNP四座配位子・π共役系有機分子・フェンタニル混入ヘロイン・プロオリゴ型核酸医薬

有機合成化学協会が発行する有機合成化学協会誌、2020年9月号がオンライン公開されました。完…

Chem-Station Twitter

PAGE TOP