[スポンサーリンク]

化学者のつぶやき

アザジラクチンの全合成

[スポンサーリンク]

Synthesis of Azadirachtin: A Long but Successful Journey Veitch, G. E.; Beckmann, E.; Burke, B. J.; Boyer,  A.; Maslen, S. L.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7629. DOI:10.1002/anie.200703027
A Relay Route for the Synthesis of Azadirachtin Veitch, G. E.; Beckmann, E.; Burke, B. j.; Boyer, A.; Ayats, C.; Ley, S. V. Angew. Chem. Int. Ed. 2007, 46, 7633. DOI:10.1002/anie.200703027

(ややいまさら感がありますが) ケンブリッジ大学・Steven Leyらによって先日達成された、アザジラクチンの全合成について紹介します。

冒頭の構造式を見てもらえれば分かりますが、縮環構造・高酸化数・16の不斉炭素(うち4級炭素が4つ)と、とんでもなく複雑な構造をしている化合物です。最終物は光やら酸素やらいろんなものに不安定だそうで、「これを合成しよう!」と思ったとしても、もはやどこら辺から手をつけて良いのかすら分かりません。2007年に全合成された天然物の中では、疑いなく最難化合物の一つといえるでしょう。

ともかくルートの収束性を高める戦略に基づけば、下のような結合で切る逆合成をして、フラグメント同士をくっつけるやり方がよさそうです。 ただし、この結合は、とてつもなく混み合った四置換炭素同士を結んでいます。Leyらも同様の逆合成をしていますが、やはり最も困難を極めたのは「どうやってこの炭素-炭素結合をうまく作るか?」、ということでした。実際ありとあらゆる方法を試しているようですが、どれもこれもうまくいかず相当な苦戦を強いられたようです。

唯一上手くいったやり方は、下図のようにプロパルギル位に脱離基を持つピランフラグメントを用いる方法です。反応点周りが立体的に空いていることが何にも増して重要だったようです。

 

azadirachtin2.gif

では、実際のルートを見てみましょう。デカリンフラグメントの基礎骨格は、分子内Diels-Alder反応およびアルドール型環化を用いて上手く構築しています。シリル基はDiels-Alder反応の選択性発現に重要であるとともに、後に玉尾-Fleming酸化によってヒドロキシル基を導入するための足がかりになっています。

azadirachtin3.gif

 いよいよフラグメントカップリングです。アルキル化によって結合を作ろうとしましたが、得られてきたものは、エノールの酸素原子上で反応が起こった化合物でした(このあたりからも一筋縄ではいかないことが見て取れると思います)。

 ともあれフラグメント間で結合が作れたので、これを足がかりとしたClaisen転位によって炭素-炭素結合形成を試みています。熱的にも反応がいったようですが、Tosteらによって開発されたAu(I)触媒を用いるプロパルギルClaisen転位(Saucy-Marbett転位)が有効だったようです。最新合成技術の発展がどれだけ凄いかを示す好例といえるでしょう。

 その後もかなりハードル高い変換が続きます。Barton-McCombie条件によってラジカル環化反応を行い右半分の炭素骨格構築に成功しています。続いて混み合った位置にエポキシ化を行っています。温度(100℃以上)・時間(7日間)・ラジカルスカベンジャー添加という突き詰めた条件になっており、ここ1ステップだけで気が遠くなる検討が重ねられていることが想像できます。これでDegradation Studiesで得られる化合物と同じものが得られ、あとは逆行ルートに従って合成を進め、アザジラクチンの全合成を完了しています。

azadirachtin4.gif

 40人以上の共同研究者、22年という長い年月をかけて達成された64段階の全合成ルートは、どのような価値をもたらすのでしょうか?これについてはほうぼうの雑誌で批評記事が掲載されており、必ずしも肯定的な意見ばかりでもないようです。

ともあれ、最先端の合成技術を結集してもこれほどまでに大変なルートになる現実を鑑みれば、現状の有機合成における課題をいくつも見いだせるように思います。少なくとも「縮環構造・高酸化数・連続不斉炭素を持つ化合物を実用合成可能なレベルには、合成技術の方が到達できていない」ということはいえそうです。

では、どうすれば効率よく合成できるようになるのか?はたまた、それは追い求め続けるべき課題なのか? ―――それを各々で判断し、考え、決められること、それが学術研究の持ちうる自由さです。

その自由さを謳歌しうる限り、研究者たちはどういう風に考え、有機合成はどう進展していくのか?全ての時代を通じて、それは興味深い思索となるでしょう。

 関連リンク

Azadirachtin (Wikipedia)

ニーム(インドセンダン)

アザジラクチン・22年目の陥落 (有機化学美術館・分館)

The Ley Group homepage ケンブリッジ大・レイ研究室のホームページ

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 実験する時の服装(企業研究所)
  2. 天然物の生合成に関わる様々な酵素
  3. 企業の研究を通して感じたこと
  4. 化学系学生のための就活2020
  5. 日本薬学会  第143年会 付設展示会ケムステキャンペーン Pa…
  6. GRE Chemistry 受験報告 –試験対策編–
  7. データ駆動型R&D組織の実現に向けた、MIを組織的に定着させる3…
  8. 化学合成で「クモの糸」を作り出す

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 理論的手法を用いた結晶内における三重項エネルギーの流れの観測
  2. 2010年日本化学会各賞発表-学会賞-
  3. ChemDrawの開発秘話〜SciFinder連携機能レビュー
  4. デヴィッド・リー David A. Leigh
  5. 分子の対称性が高いってどういうこと ?【化学者だって数学するっつーの!: 対称操作】
  6. 手で解く量子化学I
  7. 投票!2019年ノーベル化学賞は誰の手に!?
  8. 研究テーマ変更奮闘記 – PhD留学(後編)
  9. 分子内架橋ポリマーを触媒ナノリアクターへ応用する
  10. 相次ぐ有毒植物による食中毒と放射性物質に関連した事件

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP