[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代配線技術編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。さて、前回はアルミニウムから銅への半導体内部配線の変遷をご覧いただきましたが、今回は銅に代わる次世代配線技術について特集します。

chip

半導体チップ(画像:pixabay)

前回のおさらいですが、当初の半導体内部配線にはアルミニウムが広く利用されていました。その背景には、アルミニウムの高い電気伝導度とスパッタによる加工の容易さがありました。

初期の半導体配線の例(画像:Wikipedia

しかし1990年代に差し掛かると、微細化の進展によりアルミニウムでは所定の性能を発揮できなくなります。具体的には配線抵抗の増大とエレクトロマイグレーション(EMが座視できない問題として浮上しました。

ここでアルミニウムに代わる材料と目されたのがでした。銅は比較的安価で電気伝導度がさらに高く、EMを起こしにくいという利点を兼ね備えていました。しかしながら、スパッタによる微細加工が不可能であったことから加工技術の開発が急務でした。

そこで銅配線の形成に用いられたのがダマシンと呼ばれるめっき手法でした。これは溝や穴などの凹部に銅を埋め込む特殊なめっき技術で、添加剤の利用など高度な技術力が求められるものでした。

ダマシンの確立によっていったんは解決されたかに見えたこれらの課題でしたが、銅にも電気抵抗は存在し、EMを全く起こさないわけではないことから、実際には先延ばしされたに過ぎませんでした。とりわけ、微細化のさらなる進展によって銅配線においてもEMは重要な問題となり、既に半導体性能に直接影響を及ぼすまでになっています。

抵抗増大

配線の微細化によって抵抗が増大してしまいます(イメージ)

EM耐性金属による代替

その打開策として現在注目されているのが、一つは銅配線の境界に薄いバリアメタルを設ける手法、もう1つは、配線材料そのものをEM耐性の高い金属に変更する手法です。

前者のバリア層候補素と後者の配線候補として共に嘱望されているのが、コバルトCoルテニウムRuです。いずれも銅に比べて電流密度の許容値が高いとされています。

しかしながら両者とも比抵抗と熱伝導率では銅に劣るため、配線抵抗の低減と放熱の確保が本質的な課題として残ることが見込まれています。とはいえ銅配線をすべてこれらに置き換えれば現在バリアメタルとして使用されている窒化タンタルTaNなどによる抵抗を排し、総合的には銅より優れた性能を示す可能性があります。

実際にIBM(米)とGLOBALFOUNDRIES(米)、Samsung Electronics(韓)、Applied Materials(米)は共同で、銅配線をコバルト層で被覆することで、抵抗上昇を抑制しながらEM耐性を向上させた多層配線技術を開発しています。さらにIntel(米)も最新の10 nmプロセスにおいて、多層配線の一部にコバルトを採択しています。

ナノカーボン配線

金属結合は脆弱であることから、配線材料として根本的にEMのリスクを抱えており、将来的にさらなる微細化が進展すると、どのような金属であっても問題が顕在化することになります。

そこで基礎研究が進められているのが、全てを強固な共有結合を形成した炭素材料で構築するオールカーボン配線です。配線部を多層グラフェン(MLG)、ビアをカーボンナノチューブ(CNT)で形成することが検討されています。

カーボンナノチューブカーボンナノチューブは次世代配線材料の例 (画像:Wikipedia)

グラフェンは理論抵抗率が、銅の2/3程度と極めて低い一方、許容できる電流密度は100倍~1000倍、熱伝導率は10倍にも達するとされており、その選択的合成や成膜技術の開発が競われています。

CNTに関しては東芝がCVDを用いた高密度成長によるビア形成を実現しており[1]、エレクトロニクス用途への適用が待たれます。

いずれも現状では蒸着などの物理的手法で合成されることが多く、選択性・収率共に改善の余地が残ります。両者とも有機化学的な手法を用いれば高選択的・高収率での合成も不可能ではないと思われることから、その確立にも期待が高まります。

参考文献

[1] 東芝レビュー Vol.66 No.2 (2011), p.46-49.

関連リンク

PC Watch

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 鉄の新たな可能性!?鉄を用いたWacker型酸化
  2. 条件最適化向けマテリアルズ・インフォマティクスSaaS 「miH…
  3. 有機合成化学協会誌2022年3月号:トリフリル基・固相多点担持ホ…
  4. 超難関天然物 Palau’amine・ついに陥落
  5. 可視光照射でトリメチルロックを駆動する
  6. ChemDrawの使い方 【基本機能編】
  7. 化学研究ライフハック:化学検索ツールをあなたのブラウザに
  8. 化学研究ライフハック :RSSリーダーで新着情報をチェック!20…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 高橋 大介 Daisuke Takahashi
  2. アメリカ化学留学 ”入学審査 編”!
  3. 海洋天然物パラウアミンの全合成
  4. 計算と実験の融合による新反応開発:対称及び非対称DPPEの簡便合成
  5. 【21卒イベント】「化学系学生のための企業研究セミナー」 大阪1/17(金)・東京1/19(日)
  6. 原子量に捧げる詩
  7. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  8. NMR解析ソフト。まとめてみた。①
  9. ありふれた試薬でカルボン酸をエノラート化:カルボン酸の触媒的α-重水素化反応
  10. 無保護糖を原料とするシアル酸誘導体の触媒的合成

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

第59回「希土類科学の楽しさを広めたい」長谷川靖哉 教授

第59回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

材料開発の未来とロードマップ -「人の付加価値を高めるインフォマティクスとロボティクス」-

 申込みはこちら■セミナー概要本動画は、20022年11月11日に開催された共催セミナーで弊…

第58回「新しい分子が世界を変える力を信じて」山田容子 教授

第58回目の研究者インタビューです! 今回は第36回ケムステVシンポ「光化学最前線2023」の講演者…

始めよう!3Dプリンターを使った実験器具DIY:準備・お手軽プリント編

オリジナルの実験器具を3Dプリンターで作る企画を始めました。第一弾として3Dプリンターの導入と試しに…

第16回日本化学連合シンポジウム「withコロナ時代における化学への期待」

およそ3年間に渡る新型コロナウイルス感染症の蔓延により、経済、文化、研究、社会活動のすべてが大きなダ…

アカデミアケミストがパパ育休を取得しました!

こんにちは、こんばんは、おはようございます、Macyこと九大院薬 助教の寄立麻琴です。タイトルに…

巧みに骨格構築!Daphgracilineの全合成

ユズリハアルカロイドであるdaphgracilineの全合成が初めて達成された。Type II 分子…

【四国化成ホールディングス】新卒採用情報(2024卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

部分酸化状態を有する純有機中性分子結晶の開発に初めて成功

第464回のスポットライトリサーチは、熊本大学 大学院自然科学教育部 理学専攻 化学コース 上田研究…

マテリアルズ・インフォマティクスにおける高次元ベイズ最適化の活用-パラメーター数が多い条件最適化テーマに対応したmiHub新機能もご紹介-

開催日:2023/2/1  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP