[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代配線技術編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。さて、前回はアルミニウムから銅への半導体内部配線の変遷をご覧いただきましたが、今回は銅に代わる次世代配線技術について特集します。

chip

半導体チップ(画像:pixabay)

前回のおさらいですが、当初の半導体内部配線にはアルミニウムが広く利用されていました。その背景には、アルミニウムの高い電気伝導度とスパッタによる加工の容易さがありました。

初期の半導体配線の例(画像:Wikipedia

しかし1990年代に差し掛かると、微細化の進展によりアルミニウムでは所定の性能を発揮できなくなります。具体的には配線抵抗の増大とエレクトロマイグレーション(EMが座視できない問題として浮上しました。

ここでアルミニウムに代わる材料と目されたのがでした。銅は比較的安価で電気伝導度がさらに高く、EMを起こしにくいという利点を兼ね備えていました。しかしながら、スパッタによる微細加工が不可能であったことから加工技術の開発が急務でした。

そこで銅配線の形成に用いられたのがダマシンと呼ばれるめっき手法でした。これは溝や穴などの凹部に銅を埋め込む特殊なめっき技術で、添加剤の利用など高度な技術力が求められるものでした。

ダマシンの確立によっていったんは解決されたかに見えたこれらの課題でしたが、銅にも電気抵抗は存在し、EMを全く起こさないわけではないことから、実際には先延ばしされたに過ぎませんでした。とりわけ、微細化のさらなる進展によって銅配線においてもEMは重要な問題となり、既に半導体性能に直接影響を及ぼすまでになっています。

抵抗増大

配線の微細化によって抵抗が増大してしまいます(イメージ)

EM耐性金属による代替

その打開策として現在注目されているのが、一つは銅配線の境界に薄いバリアメタルを設ける手法、もう1つは、配線材料そのものをEM耐性の高い金属に変更する手法です。

前者のバリア層候補素と後者の配線候補として共に嘱望されているのが、コバルトCoルテニウムRuです。いずれも銅に比べて電流密度の許容値が高いとされています。

しかしながら両者とも比抵抗と熱伝導率では銅に劣るため、配線抵抗の低減と放熱の確保が本質的な課題として残ることが見込まれています。とはいえ銅配線をすべてこれらに置き換えれば現在バリアメタルとして使用されている窒化タンタルTaNなどによる抵抗を排し、総合的には銅より優れた性能を示す可能性があります。

実際にIBM(米)とGLOBALFOUNDRIES(米)、Samsung Electronics(韓)、Applied Materials(米)は共同で、銅配線をコバルト層で被覆することで、抵抗上昇を抑制しながらEM耐性を向上させた多層配線技術を開発しています。さらにIntel(米)も最新の10 nmプロセスにおいて、多層配線の一部にコバルトを採択しています。

ナノカーボン配線

金属結合は脆弱であることから、配線材料として根本的にEMのリスクを抱えており、将来的にさらなる微細化が進展すると、どのような金属であっても問題が顕在化することになります。

そこで基礎研究が進められているのが、全てを強固な共有結合を形成した炭素材料で構築するオールカーボン配線です。配線部を多層グラフェン(MLG)、ビアをカーボンナノチューブ(CNT)で形成することが検討されています。

カーボンナノチューブカーボンナノチューブは次世代配線材料の例 (画像:Wikipedia)

グラフェンは理論抵抗率が、銅の2/3程度と極めて低い一方、許容できる電流密度は100倍~1000倍、熱伝導率は10倍にも達するとされており、その選択的合成や成膜技術の開発が競われています。

CNTに関しては東芝がCVDを用いた高密度成長によるビア形成を実現しており[1]、エレクトロニクス用途への適用が待たれます。

いずれも現状では蒸着などの物理的手法で合成されることが多く、選択性・収率共に改善の余地が残ります。両者とも有機化学的な手法を用いれば高選択的・高収率での合成も不可能ではないと思われることから、その確立にも期待が高まります。

参考文献

[1] 東芝レビュー Vol.66 No.2 (2011), p.46-49.

関連リンク

PC Watch

関連書籍

gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発
  2. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  3. ケムステSlack、開設一周年!
  4. ヘテロ環、光当てたら、減ってる環
  5. 銅中心が動く人工非ヘム金属酵素の簡便な構築に成功
  6. 【詳説】2013年イグノーベル化学賞!「涙のでないタマネギ開発」…
  7. 可視光を吸収する配位子を作って、配位先のパラジウムを活性化する
  8. CV測定器を使ってみた

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ノーベル受賞者、東北大が米から招請
  2. スイスの博士課程ってどうなの?3〜面接と入学手続き〜
  3. 理系のための就活ガイド
  4. アピオース apiose
  5. 赤色発光する希土類錯体で植物成長促進の実証に成功
  6. Grubbs第二世代触媒
  7. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  8. ヴィンス・ロテロ Vincent M. Rotello
  9. リガンド革命
  10. メタンハイドレートの化学

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

最新の電子顕微鏡法によりポリエチレン分子鎖の向きを可視化することに成功

第583回のスポットライトリサーチは、東北大学大学院 工学研究科 応用化学専攻 陣内研究室の狩野見 …

\脱炭素・サーキュラーエコノミーの実現/  マイクロ波を用いたケミカルリサイクル・金属製錬プロセスのご紹介

※本セミナーは、技術者および事業担当者向けです。脱炭素化と省エネに貢献するモノづくり技術の一つと…

【書籍】女性が科学の扉を開くとき:偏見と差別に対峙した六〇年 NSF(米国国立科学財団)長官を務めた科学者が語る

概要米国の女性科学者たちは科学界のジェンダーギャップにどのように向き合い,変えてきたのか ……

【太陽ホールディングス】新卒採用情報(2025卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

細胞代謝学術セミナー全3回 主催:同仁化学研究所

細胞代謝研究をテーマに第一線でご活躍されている先生方をお招きし、同仁化学研究所主催の学術セミナーを全…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2023/12/06 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP