[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代配線技術編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。さて、前回はアルミニウムから銅への半導体内部配線の変遷をご覧いただきましたが、今回は銅に代わる次世代配線技術について特集します。

chip

半導体チップ(画像:pixabay)

前回のおさらいですが、当初の半導体内部配線にはアルミニウムが広く利用されていました。その背景には、アルミニウムの高い電気伝導度とスパッタによる加工の容易さがありました。

初期の半導体配線の例(画像:Wikipedia

しかし1990年代に差し掛かると、微細化の進展によりアルミニウムでは所定の性能を発揮できなくなります。具体的には配線抵抗の増大とエレクトロマイグレーション(EMが座視できない問題として浮上しました。

ここでアルミニウムに代わる材料と目されたのがでした。銅は比較的安価で電気伝導度がさらに高く、EMを起こしにくいという利点を兼ね備えていました。しかしながら、スパッタによる微細加工が不可能であったことから加工技術の開発が急務でした。

そこで銅配線の形成に用いられたのがダマシンと呼ばれるめっき手法でした。これは溝や穴などの凹部に銅を埋め込む特殊なめっき技術で、添加剤の利用など高度な技術力が求められるものでした。

ダマシンの確立によっていったんは解決されたかに見えたこれらの課題でしたが、銅にも電気抵抗は存在し、EMを全く起こさないわけではないことから、実際には先延ばしされたに過ぎませんでした。とりわけ、微細化のさらなる進展によって銅配線においてもEMは重要な問題となり、既に半導体性能に直接影響を及ぼすまでになっています。

抵抗増大

配線の微細化によって抵抗が増大してしまいます(イメージ)

EM耐性金属による代替

その打開策として現在注目されているのが、一つは銅配線の境界に薄いバリアメタルを設ける手法、もう1つは、配線材料そのものをEM耐性の高い金属に変更する手法です。

前者のバリア層候補素と後者の配線候補として共に嘱望されているのが、コバルトCoルテニウムRuです。いずれも銅に比べて電流密度の許容値が高いとされています。

しかしながら両者とも比抵抗と熱伝導率では銅に劣るため、配線抵抗の低減と放熱の確保が本質的な課題として残ることが見込まれています。とはいえ銅配線をすべてこれらに置き換えれば現在バリアメタルとして使用されている窒化タンタルTaNなどによる抵抗を排し、総合的には銅より優れた性能を示す可能性があります。

実際にIBM(米)とGLOBALFOUNDRIES(米)、Samsung Electronics(韓)、Applied Materials(米)は共同で、銅配線をコバルト層で被覆することで、抵抗上昇を抑制しながらEM耐性を向上させた多層配線技術を開発しています。さらにIntel(米)も最新の10 nmプロセスにおいて、多層配線の一部にコバルトを採択しています。

ナノカーボン配線

金属結合は脆弱であることから、配線材料として根本的にEMのリスクを抱えており、将来的にさらなる微細化が進展すると、どのような金属であっても問題が顕在化することになります。

そこで基礎研究が進められているのが、全てを強固な共有結合を形成した炭素材料で構築するオールカーボン配線です。配線部を多層グラフェン(MLG)、ビアをカーボンナノチューブ(CNT)で形成することが検討されています。

カーボンナノチューブカーボンナノチューブは次世代配線材料の例 (画像:Wikipedia)

グラフェンは理論抵抗率が、銅の2/3程度と極めて低い一方、許容できる電流密度は100倍~1000倍、熱伝導率は10倍にも達するとされており、その選択的合成や成膜技術の開発が競われています。

CNTに関しては東芝がCVDを用いた高密度成長によるビア形成を実現しており[1]、エレクトロニクス用途への適用が待たれます。

いずれも現状では蒸着などの物理的手法で合成されることが多く、選択性・収率共に改善の余地が残ります。両者とも有機化学的な手法を用いれば高選択的・高収率での合成も不可能ではないと思われることから、その確立にも期待が高まります。

参考文献

[1] 東芝レビュー Vol.66 No.2 (2011), p.46-49.

関連リンク

PC Watch

関連書籍

berg

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. 【速報】ノーベル化学賞2014ー超解像顕微鏡の開発
  2. 触媒のチカラで拓く位置選択的シクロプロパン合成
  3. 日化年会に参加しました:たまたま聞いたA講演より
  4. (+)-フォーセチミンの全合成
  5. 天然物界70年の謎に終止符
  6. 芳香族性に関する新概念と近赤外吸収制御への応用
  7. 過酸がC–H結合を切ってメチル基を提供する
  8. 原油生産の切り札!? 国内原油生産の今昔物語

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. いざ、低温反応!さて、バスはどうする?〜水/メタノール混合系で、どんな温度も自由自在〜
  2. 実験の再現性でお困りではありませんか?
  3. ダイキン、特許を無償開放 代替フロンのエアコン冷媒
  4. サミュエル・ダニシェフスキー Samuel J. Danishefsky
  5. 無保護糖を原料とするシアル酸誘導体の触媒的合成
  6. 科学系のLINEスタンプを使おう!!
  7. 「パキシル」服用の自殺者増加 副作用の疑い
  8. “マイクロプラスチック”が海をただよう その1
  9. どっちをつかう?:adequateとappropriate
  10. イタリアに医薬品販売会社を設立 エーザイ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
« 9月   11月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

第165回―「光電変換へ応用可能な金属錯体の開発」Ed Constable教授

第165回の海外化学者インタビューは、エドウィン(エド)・コンステイブル教授です。バーゼル大学化学科…

MEDCHEM NEWSと提携しました

「くすり」に関係する研究者や技術者が約1万7専任が所属する日本薬学会。そ…

抗体を液滴に濃縮し細胞内へ高速輸送:液-液相分離を活用した抗体の新規細胞内輸送法の開発

第341回のスポットライトリサーチは、京都大学 薬学研究科(二木研究室)博士後期課程1年の岩田恭宗さ…

革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体験記

夏休みも去って新学期も始まり、研究者としては科研費申請に忙しい時期ですね。学会シーズン到来の足音も聞…

実験手袋をいろいろ試してみたーつかいすてから高級手袋までー

前回は番外編でしたが、試してみたシリーズ本編に戻ります。引き続き実験関係の消耗品…

第164回―「光・熱エネルギーを変換するスマート材料の開発」Panče Naumov教授

第164回の海外化学者インタビューは、パンチェ・ナウモフ教授です。大阪大学大学院工学研究科 生命先端…

SNS予想で盛り上がれ!2021年ノーベル化学賞は誰の手に?

今年もノーベル賞シーズンの到来です!化学賞は日本時間 10月6日(水) 18時45分に発表です。昨年…

カーボンナノチューブ薄膜のSEM画像を生成し、物性を予測するAIが開発される

先端素材高速開発技術研究組合(ADMAT)、日本ゼオンは産業技術総合研究所(AIST)と共同で、NE…

ケムステ版・ノーベル化学賞候補者リスト【2021年版】

各媒体からかき集めた情報を元に、「未来にノーベル化学賞の受賞確率がある、存命化学者」をリストアップし…

ライトケミカル工業2023卒採用情報

当社の技術グループは、20代~30代の若手社員が重要な主要案件を担当しています。広範囲で高レベルな化…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP