[スポンサーリンク]

一般的な話題

化学者のためのエレクトロニクス講座~次世代配線技術編

[スポンサーリンク]

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLEDなど、エレクトロニクス産業で活躍する化学や材料のトピックスを詳しく掘り下げて紹介します。さて、前回はアルミニウムから銅への半導体内部配線の変遷をご覧いただきましたが、今回は銅に代わる次世代配線技術について特集します。

chip

半導体チップ(画像:pixabay)

前回のおさらいですが、当初の半導体内部配線にはアルミニウムが広く利用されていました。その背景には、アルミニウムの高い電気伝導度とスパッタによる加工の容易さがありました。

初期の半導体配線の例(画像:Wikipedia

しかし1990年代に差し掛かると、微細化の進展によりアルミニウムでは所定の性能を発揮できなくなります。具体的には配線抵抗の増大とエレクトロマイグレーション(EMが座視できない問題として浮上しました。

ここでアルミニウムに代わる材料と目されたのがでした。銅は比較的安価で電気伝導度がさらに高く、EMを起こしにくいという利点を兼ね備えていました。しかしながら、スパッタによる微細加工が不可能であったことから加工技術の開発が急務でした。

そこで銅配線の形成に用いられたのがダマシンと呼ばれるめっき手法でした。これは溝や穴などの凹部に銅を埋め込む特殊なめっき技術で、添加剤の利用など高度な技術力が求められるものでした。

ダマシンの確立によっていったんは解決されたかに見えたこれらの課題でしたが、銅にも電気抵抗は存在し、EMを全く起こさないわけではないことから、実際には先延ばしされたに過ぎませんでした。とりわけ、微細化のさらなる進展によって銅配線においてもEMは重要な問題となり、既に半導体性能に直接影響を及ぼすまでになっています。

抵抗増大

配線の微細化によって抵抗が増大してしまいます(イメージ)

EM耐性金属による代替

その打開策として現在注目されているのが、一つは銅配線の境界に薄いバリアメタルを設ける手法、もう1つは、配線材料そのものをEM耐性の高い金属に変更する手法です。

前者のバリア層候補素と後者の配線候補として共に嘱望されているのが、コバルトCoルテニウムRuです。いずれも銅に比べて電流密度の許容値が高いとされています。

しかしながら両者とも比抵抗と熱伝導率では銅に劣るため、配線抵抗の低減と放熱の確保が本質的な課題として残ることが見込まれています。とはいえ銅配線をすべてこれらに置き換えれば現在バリアメタルとして使用されている窒化タンタルTaNなどによる抵抗を排し、総合的には銅より優れた性能を示す可能性があります。

実際にIBM(米)とGLOBALFOUNDRIES(米)、Samsung Electronics(韓)、Applied Materials(米)は共同で、銅配線をコバルト層で被覆することで、抵抗上昇を抑制しながらEM耐性を向上させた多層配線技術を開発しています。さらにIntel(米)も最新の10 nmプロセスにおいて、多層配線の一部にコバルトを採択しています。

ナノカーボン配線

金属結合は脆弱であることから、配線材料として根本的にEMのリスクを抱えており、将来的にさらなる微細化が進展すると、どのような金属であっても問題が顕在化することになります。

そこで基礎研究が進められているのが、全てを強固な共有結合を形成した炭素材料で構築するオールカーボン配線です。配線部を多層グラフェン(MLG)、ビアをカーボンナノチューブ(CNT)で形成することが検討されています。

カーボンナノチューブカーボンナノチューブは次世代配線材料の例 (画像:Wikipedia)

グラフェンは理論抵抗率が、銅の2/3程度と極めて低い一方、許容できる電流密度は100倍~1000倍、熱伝導率は10倍にも達するとされており、その選択的合成や成膜技術の開発が競われています。

CNTに関しては東芝がCVDを用いた高密度成長によるビア形成を実現しており[1]、エレクトロニクス用途への適用が待たれます。

いずれも現状では蒸着などの物理的手法で合成されることが多く、選択性・収率共に改善の余地が残ります。両者とも有機化学的な手法を用いれば高選択的・高収率での合成も不可能ではないと思われることから、その確立にも期待が高まります。

参考文献

[1] 東芝レビュー Vol.66 No.2 (2011), p.46-49.

関連リンク

PC Watch

関連書籍

[amazonjs asin=”4782855508″ locale=”JP” title=”半導体デバイス―基礎理論とプロセス技術”] [amazonjs asin=”4904774809″ locale=”JP” title=”新炭素材料ナノカーボンの基礎と応用-カーボンナノチューブからグラフェンまで- (設計技術シリーズ)”] [amazonjs asin=”4759813853″ locale=”JP” title=”二次元物質の科学: グラフェンなどの分子シートが生み出す新世界 (CSJ Current Review)”] [amazonjs asin=”4781312128″ locale=”JP” title=”ナノカーボンの応用と実用化《普及版》―フラーレン,ナノチューブ,グラフェンを中心に― (新材料・新素材)”]
gaming voltammetry

berg

投稿者の記事一覧

化学メーカー勤務。学生時代は有機をかじってました⌬
電気化学、表面処理、エレクトロニクスなど、勉強しながら執筆していく予定です

関連記事

  1. ⽔を嫌う CH₃-基が⽔をトラップする︖⽣体浸透圧調整物質 TM…
  2. 露出した銀ナノクラスター表面を保持した、高機能・高安定なハイブリ…
  3. Christoper Uyeda教授の講演を聴講してみた
  4. カーボンナノリング合成に成功!
  5. 1次面接を突破するかどうかは最初の10分で決まる
  6. 美術品保存と高分子
  7. 遷移金属を用いない脂肪族C-H結合のホウ素化
  8. 博士課程学生の奨学金情報

注目情報

ピックアップ記事

  1. Gabriel試薬類縁体
  2. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の設計-前編
  3. 忍者はお茶から毒をつくったのか
  4. 武田薬、糖尿病治療剤「アクトス」の効能を追加申請
  5. ゲオスミン(geosmin)
  6. 光で脳/神経科学に革命を起こす「オプトジェネティクス」
  7. カール・ジェラッシ Carl Djerassi
  8. 第25回 名古屋メダルセミナー The 25th Nagoya Medal of Organic Chemistry
  9. 科学的発見を加速する新研究ツール「SciFinder n」を発表
  10. チャイタン・コシュラ Chaitan Khosla

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP