[スポンサーリンク]

化学者のつぶやき

Pallambins A-Dの不斉全合成

[スポンサーリンク]

保護基を使用しない、pallambins A-Dの不斉全合成が初めて達成された。今後これらのジテルペノイドの生物学的研究、および類似天然物の合成研究に利用されることが期待されるIMG Credit:Board of Trustees, Southern Illinois University

parravicinin, neopallavicinin, pallambins A-D

Parravicinin(1)、neopallavicinin(2)およびpallambins A-D(3–6)は縮環したフロフラノン環を共通してもつ複雑なジテルペノイドである(図1A)。

1, 2は1994年、3–6は2012年にそれぞれクモノスゴケ類から単離された。これらの天然物の生合成経路は浅川らによって提唱され、ラブダン型ジテルペノイドから生合成される(1)。また、3, 4はジラジカルを経由する光転位反応により、5, 6に変換されることがLouらによって示されている(2)
Pallambins A-Dは4–6個の複雑な環構造、7–10個の不斉中心、2個の全炭素四級不斉中心をもつことから、その化学合成は困難を極め、その合成例は数少ない。(±)-3,(±)-4の全合成はWongによって報告されており、Grob開裂に続く分子内アルドール反応によって二環式骨格を構築した(図1B)(3)。(±)-5,(±)-6の全合成はCarreiraによって報告されており、C–H挿入反応が鍵となっている(4)。また、Baran向山アルドール反応を含む11工程で(±)-3, (±)-4の全合成を達成した(5)。しかしながら、不斉合成の例はなくpallanbin類の詳細な生物活性評価には光学活性体の供給が望まれる。
今回北京大学のJia教授は、キラルなシクロへキセノン10から保護基を用いることなく、3, 4および5, 6の不斉全合成をそれぞれ15, 16工程で達成した(図1C)。パラジウム触媒を用いた酸化的な環化による[3.2.1]二環式骨格の構築(I)、Eschenmoser–Claisen転位に続くラクトン形成によるC環の構築(II)、および分子内Wittig反応によるD環の構築(III)が合成の鍵であった。

図1. Parravicin, neopallavicinin, pallambins A-Dとpallambins A-Dの過去の合成例

 

Enantioselective Total Synthesis of Pallambins A-D
Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y Angew. Chem., Int. Ed. 2019,58, early view.
DOI: 10.1002/anie.201907523

論文著者の紹介

研究者:Yanxing Jia
研究者の経歴:
1993–1997 B. Sc., Chemistry, Lanzhou University Lanzhou, China
1997–2002 Ph.D., Organic Chemistry, Lanzhou University Lanzhou, China(Prof. Yongqiang Tu)
2002–2007 Postdoc, Institute of Chemistry of Natural Substances (ICSN), National Center for Scientific Research (CNRS), France (Prof. Jieping Zhu)
2007–2011 Associate Professor of Medicinal Chemistry (PI), Peking University
2011– Professor of Medicinal Chemistry (PI), Peking University
研究内容:天然物の全合成、医薬品合成、新規合成法の開発

論文の概要

キラルなシクロへキセノン10に対しアリル基を立体選択的に導入し11を得た。その後、パラジウム触媒を用いた11の酸化的環化によって[3.2.1]ビシクロ骨格を構築した。二置換オレフィンのエポキシ化と続く異性化反応を経てアリルアルコール13へと誘導した(6)

次に、13に対し、ジメチルアセトアミドジメチルアセタールを作用させることで、Eschenmoser–Claisen転位が進行し、γ, δ-不飽和アミド14が生成する。14の酸処理によってラクトンを形成し、C環をもつ15を合成した。続く二工程の変換により得られた16とベストマンイリドを反応させることで、分子内Wittig反応が進行し、17を与えた。

その後、α,β-不飽和ラクトンの還元、ケトンのα位のブロモ化を行うことで18へと導いた。18を筆者らが開発したHeck型の酸化条件に附すことで、α,β-不飽和ケトン19とした。このとき、分子内Heck反応が進行した副生物20も得られた。19のエステルのα位にエチリデン基を導入することで3, 4の不斉全合成を達成した。また3, 4の光転位反応により5, 6の不斉全合成も達成した。

図2. Jiaらのpallambins A-Dの不斉全合成

以上、保護基を用いることなくpallambins A-Dの不斉全合成が達成された。今後、これらのジテルペノイドの生物学的研究、および類似した天然物の合成研究への応用が期待される。

参考文献

  1. (a)Toyota, M.; Saito, T.; Asakawa, Y. Chem. Pharm. Bull1998, 46, 178. DOI: 1248/cpb.46.178 (b)Wang, L. N.; Zhang, J. Z.; Li, X.; Wang, X. N.; Xie, C. F.; Zhou. J. C.; Lou, H. X. Org.Lett. 2012, 14, 4. DOI: 10.1021/ol3000124
  2. Zhnag, J. Z.; Zhu, R. X.; Li, G.; Sun, B.; Chen, W. ; Liu, L.; Lou, H. X. Org. Lett2012, 14, 5624. DOI: 10.1021/ol302295a
  3. Xu, X. S.; Li, Z. W.; Zhang, Y. J.; Peng, X. S.; Wong, H. N. C. Chem.Commun., 2012, 48, 8517. DOI: 1039/c2cc34310j
  4. Ebner, C.; Carreira, E. M. Angew. Chem., Int. Ed2015, 54, 11227. DOI: 1002/anie.201505126
  5. Martinez, L. P.; Umemiya, S.; Wengryniuk, S. E.; Baran, P. S. J. Am. Chem. Soc. 2016,738, 7536. DOI: 1021/jacs.6b04816
  6. Chapman, H. A.; Hebal, K.; Motherwell, W. B. Synlett 2010, 595. DOI:1055/s-0029-1219373
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機EL素子の開発と照明への応用
  2. 多様なペプチド化合物群を簡便につくるー創薬研究の新技術ー
  3. Twitter発!「笑える(?)実験大失敗集」
  4. MOF 内の水分子吸着過程の解析とそれに基づく水蒸気捕集技術の向…
  5. 第二回ケムステVプレミアレクチャー「重水素標識法の進歩と未来」を…
  6. 2020年ノーベル化学賞は「CRISPR/Cas9ゲノム編集法の…
  7. マルチディスプレイを活用していますか?
  8. シクロファン+ペリレンビスイミドで芳香環を認識

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2021年9月号:ストリゴラクトン・アミド修飾アリル化剤・液相電解自動合成・ビフェニレン・含窒素複素環
  2. リチウムイオンバッテリーの容量を最大70%まで向上させる技術が開発されている
  3. 第41回ケムステVシンポ「デジタル化社会における化学研究の多様性」を開催します!
  4. 武装抗体―化学者が貢献できるポイントとは?
  5. 無限の可能性を合成コンセプトで絞り込むーリアノドールの全合成ー
  6. クルチウス転位 Curtius Rearrangement
  7. 非常に小さな反転障壁を示す有機リン化合物の合成
  8. トリニトロトルエン / Trinitrotoluene (TNT)
  9. ゲヴァルト チオフェン合成 Gewald Thiophene Synthesis
  10. 薗頭 健吉 Kenkichi Sonogashira

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP