[スポンサーリンク]

化学者のつぶやき

Pallambins A-Dの不斉全合成

[スポンサーリンク]

保護基を使用しない、pallambins A-Dの不斉全合成が初めて達成された。今後これらのジテルペノイドの生物学的研究、および類似天然物の合成研究に利用されることが期待されるIMG Credit:Board of Trustees, Southern Illinois University

parravicinin, neopallavicinin, pallambins A-D

Parravicinin(1)、neopallavicinin(2)およびpallambins A-D(3–6)は縮環したフロフラノン環を共通してもつ複雑なジテルペノイドである(図1A)。

1, 2は1994年、3–6は2012年にそれぞれクモノスゴケ類から単離された。これらの天然物の生合成経路は浅川らによって提唱され、ラブダン型ジテルペノイドから生合成される(1)。また、3, 4はジラジカルを経由する光転位反応により、5, 6に変換されることがLouらによって示されている(2)
Pallambins A-Dは4–6個の複雑な環構造、7–10個の不斉中心、2個の全炭素四級不斉中心をもつことから、その化学合成は困難を極め、その合成例は数少ない。(±)-3,(±)-4の全合成はWongによって報告されており、Grob開裂に続く分子内アルドール反応によって二環式骨格を構築した(図1B)(3)。(±)-5,(±)-6の全合成はCarreiraによって報告されており、C–H挿入反応が鍵となっている(4)。また、Baran向山アルドール反応を含む11工程で(±)-3, (±)-4の全合成を達成した(5)。しかしながら、不斉合成の例はなくpallanbin類の詳細な生物活性評価には光学活性体の供給が望まれる。
今回北京大学のJia教授は、キラルなシクロへキセノン10から保護基を用いることなく、3, 4および5, 6の不斉全合成をそれぞれ15, 16工程で達成した(図1C)。パラジウム触媒を用いた酸化的な環化による[3.2.1]二環式骨格の構築(I)、Eschenmoser–Claisen転位に続くラクトン形成によるC環の構築(II)、および分子内Wittig反応によるD環の構築(III)が合成の鍵であった。

図1. Parravicin, neopallavicinin, pallambins A-Dとpallambins A-Dの過去の合成例

 

Enantioselective Total Synthesis of Pallambins A-D
Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y Angew. Chem., Int. Ed. 2019,58, early view.
DOI: 10.1002/anie.201907523

論文著者の紹介

研究者:Yanxing Jia
研究者の経歴:
1993–1997 B. Sc., Chemistry, Lanzhou University Lanzhou, China
1997–2002 Ph.D., Organic Chemistry, Lanzhou University Lanzhou, China(Prof. Yongqiang Tu)
2002–2007 Postdoc, Institute of Chemistry of Natural Substances (ICSN), National Center for Scientific Research (CNRS), France (Prof. Jieping Zhu)
2007–2011 Associate Professor of Medicinal Chemistry (PI), Peking University
2011– Professor of Medicinal Chemistry (PI), Peking University
研究内容:天然物の全合成、医薬品合成、新規合成法の開発

論文の概要

キラルなシクロへキセノン10に対しアリル基を立体選択的に導入し11を得た。その後、パラジウム触媒を用いた11の酸化的環化によって[3.2.1]ビシクロ骨格を構築した。二置換オレフィンのエポキシ化と続く異性化反応を経てアリルアルコール13へと誘導した(6)

次に、13に対し、ジメチルアセトアミドジメチルアセタールを作用させることで、Eschenmoser–Claisen転位が進行し、γ, δ-不飽和アミド14が生成する。14の酸処理によってラクトンを形成し、C環をもつ15を合成した。続く二工程の変換により得られた16とベストマンイリドを反応させることで、分子内Wittig反応が進行し、17を与えた。

その後、α,β-不飽和ラクトンの還元、ケトンのα位のブロモ化を行うことで18へと導いた。18を筆者らが開発したHeck型の酸化条件に附すことで、α,β-不飽和ケトン19とした。このとき、分子内Heck反応が進行した副生物20も得られた。19のエステルのα位にエチリデン基を導入することで3, 4の不斉全合成を達成した。また3, 4の光転位反応により5, 6の不斉全合成も達成した。

図2. Jiaらのpallambins A-Dの不斉全合成

以上、保護基を用いることなくpallambins A-Dの不斉全合成が達成された。今後、これらのジテルペノイドの生物学的研究、および類似した天然物の合成研究への応用が期待される。

参考文献

  1. (a)Toyota, M.; Saito, T.; Asakawa, Y. Chem. Pharm. Bull1998, 46, 178. DOI: 1248/cpb.46.178 (b)Wang, L. N.; Zhang, J. Z.; Li, X.; Wang, X. N.; Xie, C. F.; Zhou. J. C.; Lou, H. X. Org.Lett. 2012, 14, 4. DOI: 10.1021/ol3000124
  2. Zhnag, J. Z.; Zhu, R. X.; Li, G.; Sun, B.; Chen, W. ; Liu, L.; Lou, H. X. Org. Lett2012, 14, 5624. DOI: 10.1021/ol302295a
  3. Xu, X. S.; Li, Z. W.; Zhang, Y. J.; Peng, X. S.; Wong, H. N. C. Chem.Commun., 2012, 48, 8517. DOI: 1039/c2cc34310j
  4. Ebner, C.; Carreira, E. M. Angew. Chem., Int. Ed2015, 54, 11227. DOI: 1002/anie.201505126
  5. Martinez, L. P.; Umemiya, S.; Wengryniuk, S. E.; Baran, P. S. J. Am. Chem. Soc. 2016,738, 7536. DOI: 1021/jacs.6b04816
  6. Chapman, H. A.; Hebal, K.; Motherwell, W. B. Synlett 2010, 595. DOI:1055/s-0029-1219373
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. アミン化合物をワンポットで簡便に合成 -新規還元的アミノ化触媒-…
  2. NMR Chemical Shifts ー溶媒のNMR論文より
  3. アノードカップリングにより完遂したテバインの不斉全合成
  4. 低投資で効率的な英語学習~有用な教材は身近にある!
  5. (–)-Daphenezomine AとBの全合成
  6. なぜクロスカップリングは日本で発展したのか?
  7. 天然にある中間体から多様な医薬候補を創り出す
  8. 銀カルベノイドの金属特性を活用したフェノール類の不斉脱芳香族化反…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull Method for Determination of Enantiomeric Excess
  2. 秋田の女子高生が「ヒル避け」特許を取得
  3. リベロマイシンA /Reveromycin A
  4. 黒田 玲子 Reiko Kuroda
  5. ボロン酸MIDAエステル MIDA boronate
  6. プロドラッグの話
  7. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFinder Future Leaders 2018
  8. 効率的に新薬を生み出すLate-Stage誘導体化反応の開発
  9. アミロイド認識で活性を示す光触媒の開発:アルツハイマー病の新しい治療法へ
  10. A値(A value)

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!

日本初のオープン化学コミュニティ・ケムステSlackを立ち上げてもうすぐ2年が経ちます。かな…

第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!

そろそろケムステVシンポも開始しますが、その前にもう一度Vプレレクのお知らせです。3月末に第…

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

合格体験記:知的財産管理技能検定~berg編~

私(berg)が2019(令和元)年11月17日(日)に受験した3級(第34回)の記録です。現状とは…

ゼロから学ぶ機械学習【化学徒の機械学習】

hodaです。機械学習に興味があります。突然ですが読者の皆さんは第13回ケムステVシンポジウム「…

Chem-Station Twitter

PAGE TOP