[スポンサーリンク]

化学者のつぶやき

Pallambins A-Dの不斉全合成

[スポンサーリンク]

保護基を使用しない、pallambins A-Dの不斉全合成が初めて達成された。今後これらのジテルペノイドの生物学的研究、および類似天然物の合成研究に利用されることが期待されるIMG Credit:Board of Trustees, Southern Illinois University

parravicinin, neopallavicinin, pallambins A-D

Parravicinin(1)、neopallavicinin(2)およびpallambins A-D(3–6)は縮環したフロフラノン環を共通してもつ複雑なジテルペノイドである(図1A)。

1, 2は1994年、3–6は2012年にそれぞれクモノスゴケ類から単離された。これらの天然物の生合成経路は浅川らによって提唱され、ラブダン型ジテルペノイドから生合成される(1)。また、3, 4はジラジカルを経由する光転位反応により、5, 6に変換されることがLouらによって示されている(2)
Pallambins A-Dは4–6個の複雑な環構造、7–10個の不斉中心、2個の全炭素四級不斉中心をもつことから、その化学合成は困難を極め、その合成例は数少ない。(±)-3,(±)-4の全合成はWongによって報告されており、Grob開裂に続く分子内アルドール反応によって二環式骨格を構築した(図1B)(3)。(±)-5,(±)-6の全合成はCarreiraによって報告されており、C–H挿入反応が鍵となっている(4)。また、Baran向山アルドール反応を含む11工程で(±)-3, (±)-4の全合成を達成した(5)。しかしながら、不斉合成の例はなくpallanbin類の詳細な生物活性評価には光学活性体の供給が望まれる。
今回北京大学のJia教授は、キラルなシクロへキセノン10から保護基を用いることなく、3, 4および5, 6の不斉全合成をそれぞれ15, 16工程で達成した(図1C)。パラジウム触媒を用いた酸化的な環化による[3.2.1]二環式骨格の構築(I)、Eschenmoser–Claisen転位に続くラクトン形成によるC環の構築(II)、および分子内Wittig反応によるD環の構築(III)が合成の鍵であった。

図1. Parravicin, neopallavicinin, pallambins A-Dとpallambins A-Dの過去の合成例

 

Enantioselective Total Synthesis of Pallambins A-D
Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y Angew. Chem., Int. Ed. 2019,58, early view.
DOI: 10.1002/anie.201907523

論文著者の紹介

研究者:Yanxing Jia
研究者の経歴:
1993–1997 B. Sc., Chemistry, Lanzhou University Lanzhou, China
1997–2002 Ph.D., Organic Chemistry, Lanzhou University Lanzhou, China(Prof. Yongqiang Tu)
2002–2007 Postdoc, Institute of Chemistry of Natural Substances (ICSN), National Center for Scientific Research (CNRS), France (Prof. Jieping Zhu)
2007–2011 Associate Professor of Medicinal Chemistry (PI), Peking University
2011– Professor of Medicinal Chemistry (PI), Peking University
研究内容:天然物の全合成、医薬品合成、新規合成法の開発

論文の概要

キラルなシクロへキセノン10に対しアリル基を立体選択的に導入し11を得た。その後、パラジウム触媒を用いた11の酸化的環化によって[3.2.1]ビシクロ骨格を構築した。二置換オレフィンのエポキシ化と続く異性化反応を経てアリルアルコール13へと誘導した(6)

次に、13に対し、ジメチルアセトアミドジメチルアセタールを作用させることで、Eschenmoser–Claisen転位が進行し、γ, δ-不飽和アミド14が生成する。14の酸処理によってラクトンを形成し、C環をもつ15を合成した。続く二工程の変換により得られた16とベストマンイリドを反応させることで、分子内Wittig反応が進行し、17を与えた。

その後、α,β-不飽和ラクトンの還元、ケトンのα位のブロモ化を行うことで18へと導いた。18を筆者らが開発したHeck型の酸化条件に附すことで、α,β-不飽和ケトン19とした。このとき、分子内Heck反応が進行した副生物20も得られた。19のエステルのα位にエチリデン基を導入することで3, 4の不斉全合成を達成した。また3, 4の光転位反応により5, 6の不斉全合成も達成した。

図2. Jiaらのpallambins A-Dの不斉全合成

以上、保護基を用いることなくpallambins A-Dの不斉全合成が達成された。今後、これらのジテルペノイドの生物学的研究、および類似した天然物の合成研究への応用が期待される。

参考文献

  1. (a)Toyota, M.; Saito, T.; Asakawa, Y. Chem. Pharm. Bull1998, 46, 178. DOI: 1248/cpb.46.178 (b)Wang, L. N.; Zhang, J. Z.; Li, X.; Wang, X. N.; Xie, C. F.; Zhou. J. C.; Lou, H. X. Org.Lett. 2012, 14, 4. DOI: 10.1021/ol3000124
  2. Zhnag, J. Z.; Zhu, R. X.; Li, G.; Sun, B.; Chen, W. ; Liu, L.; Lou, H. X. Org. Lett2012, 14, 5624. DOI: 10.1021/ol302295a
  3. Xu, X. S.; Li, Z. W.; Zhang, Y. J.; Peng, X. S.; Wong, H. N. C. Chem.Commun., 2012, 48, 8517. DOI: 1039/c2cc34310j
  4. Ebner, C.; Carreira, E. M. Angew. Chem., Int. Ed2015, 54, 11227. DOI: 1002/anie.201505126
  5. Martinez, L. P.; Umemiya, S.; Wengryniuk, S. E.; Baran, P. S. J. Am. Chem. Soc. 2016,738, 7536. DOI: 1021/jacs.6b04816
  6. Chapman, H. A.; Hebal, K.; Motherwell, W. B. Synlett 2010, 595. DOI:1055/s-0029-1219373
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 典型元素を超活用!不飽和化合物の水素化/脱水素化を駆使した水素精…
  2. Wiley社の本が10%割引キャンペーン中~Amazon~
  3. ヒュッケル法(後編)~Excelでフラーレンの電子構造を予測して…
  4. 有機分子・バイオエレクトロニクス分科会(M&BE) 新…
  5. カルボン酸、窒素をトスしてアミノ酸へ
  6. アメリカ化学留学 ”実践編 ー英会話の勉強ーR…
  7. ファンデルワールス力で分子を接着して三次元の構造体を組み上げる
  8. ゾウががんになりにくい本当の理由

注目情報

ピックアップ記事

  1. パッションフルーツに「体内時計」遅らせる働き?
  2. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  3. 教養としての化学入門: 未来の課題を解決するために
  4. 元素手帳 2018
  5. ACS Macro Letters創刊!
  6. 1次面接を突破するかどうかは最初の10分で決まる
  7. 犬の「肥満治療薬」を認可=米食品医薬品局
  8. 化学者のためのエレクトロニクス講座~次世代の通信技術編~
  9. いつ、どこで体内に 放射性物質に深まる謎
  10. 定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年9月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

第42回メディシナルケミストリーシンポジウム

テーマAI×創薬 無限能可能性!? ノーベル賞研究が拓く創薬の未来を探る…

山口 潤一郎 Junichiro Yamaguchi

山口潤一郎(やまぐちじゅんいちろう、1979年1月4日–)は日本の有機化学者である。早稲田大学教授 …

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP